"Supertagger" behavior in building folksonomies

A folksonomy is ostensibly an information structure built up by the "wisdom of the crowds", but is the "crowd" really doing the work? Tagging is in fact a sharply skewed process in which a small minority of users generate an overwhelming majority of the annotations. Using data from the social music site Last.fm as a case study, this paper explores the implications of this tagging imbalance. Partitioning the folksonomy into two halves - one created by the prolific minority and the other by the non-prolific majority of taggers - we examine the large-scale differences in these two sub-folksonomies and the users generating them, and then explore several possible accounts of what might be driving these differences. We find that prolific taggers preferentially annotate content in the long-tail of less popular items, use tags with higher information content, and show greater tagging expertise. These results indicate that "supertaggers" not only tag more than their counterparts, but in quantifiably different ways.

[1]  Vittorio Loreto,et al.  Vocabulary growth in collaborative tagging systems , 2007, ArXiv.

[2]  YeChen,et al.  Why do people tag , 2010 .

[3]  Georgia Koutrika,et al.  Can social bookmarking improve web search? , 2008, WSDM '08.

[4]  M. E. J. Newman,et al.  Power laws, Pareto distributions and Zipf's law , 2005 .

[5]  Mathias Niepert,et al.  A dynamic ontology for a dynamic reference work , 2007, JCDL '07.

[6]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[7]  C. Bauckhage,et al.  Analyzing Social Bookmarking Systems : A del . icio . us Cookbook , 2008 .

[8]  Arkaitz Zubiaga,et al.  Harnessing Folksonomies to Produce a Social Classification of Resources , 2013, IEEE Transactions on Knowledge and Data Engineering.

[9]  Christoph Meinel,et al.  Measuring Expertise in Online Communities , 2011, IEEE Intelligent Systems.

[10]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[11]  Christoph Meinel,et al.  SPEAR: SPAMMING‐RESISTANT EXPERTISE ANALYSIS AND RANKING IN COLLABORATIVE TAGGING SYSTEMS , 2011, Comput. Intell..

[12]  Oded Nov,et al.  What drives content tagging: the case of photos on Flickr , 2008, CHI.

[13]  Andreas Hotho,et al.  BibSonomy: a social bookmark and publication sharing system , 2006 .

[14]  Mario Kubek,et al.  Automatic Taxonomy Extraction through Mining Social Networks , 2010 .

[15]  Arkaitz Zubiaga,et al.  Tags vs shelves: from social tagging to social classification , 2011, HT '11.

[16]  Oded Nov,et al.  Why do people tag? , 2010, Commun. ACM.

[17]  Peter M. Todd,et al.  Can simple social copying heuristics explain tag popularity in a collaborative tagging system? , 2013, WebSci.

[18]  Mor Naaman,et al.  HT06, tagging paper, taxonomy, Flickr, academic article, to read , 2006, HYPERTEXT '06.

[19]  Rossano Schifanella,et al.  Folks in Folksonomies: social link prediction from shared metadata , 2010, WSDM '10.

[20]  Markus Strohmaier,et al.  Of categorizers and describers: an evaluation of quantitative measures for tagging motivation , 2010, HT '10.

[21]  Dominik Benz,et al.  Stop thinking, start tagging: tag semantics emerge from collaborative verbosity , 2010, WWW '10.

[22]  Markus Strohmaier,et al.  Why do Users Tag? Detecting Users' Motivation for Tagging in Social Tagging Systems , 2010, ICWSM.

[23]  Touradj Ebrahimi,et al.  In Tags We Trust: Trust modeling in social tagging of multimedia content , 2012, IEEE Signal Processing Magazine.

[24]  Mor Naaman,et al.  Why we tag: motivations for annotation in mobile and online media , 2007, CHI.