Application of recursive Gibbs-Appell formulation in deriving the equations of motion of N-viscoelastic robotic manipulators in 3D space using Timoshenko Beam Theory

Abstract The goal of this paper is to describe the application of Gibbs–Appell (G–A) formulation and the assumed modes method to the mathematical modeling of N -viscoelastic link manipulators. The paper’s focus is on obtaining accurate and complete equations of motion which encompass the most related structural properties of lightweight elastic manipulators. In this study, two important damping mechanisms, namely, the structural viscoelasticity (Kelvin–Voigt) effect (as internal damping) and the viscous air effect (as external damping) have been considered. To include the effects of shear and rotational inertia, the assumption of Timoshenko beam (TB) theory (TBT) has been applied. Gravity, torsion, and longitudinal elongation effects have also been included in the formulations. To systematically derive the equations of motion and improve the computational efficiency, a recursive algorithm has been used in the modeling of the system. In this algorithm, all the mathematical operations are carried out by only 3×3 and 3×1 matrices. Finally, a computational simulation for a manipulator with two elastic links is performed in order to verify the proposed method.

[1]  W. Book Recursive Lagrangian Dynamics of Flexible Manipulator Arms , 1984 .

[2]  Eduardo Bayo,et al.  Inverse Dynamics and Kinematics of Multi- Link Elastic Robots: An Iterative Frequency Domain Approach , 1989, Int. J. Robotics Res..

[3]  A. H. Soni,et al.  Non-linear flexibility studies for spatial manipulators , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[4]  John J. Murray,et al.  Dynamic modeling of closed-chain robotic manipulators and implications for trajectory control , 1989, IEEE Trans. Robotics Autom..

[5]  Ahmed A. Shabana,et al.  A Recursive Formulation for the Dynamic Analysis of Open Loop Deformable Multibody Systems , 1988 .

[6]  Katsutada Sezawa,et al.  Dispersion of Elastic Waves propagated on the Surface of Stratified Bodies and on Curved Surfaces , 1927 .

[7]  Alan S. Morris,et al.  Accurate modelling of dynamic coupling in flexible link manipulators , 1998 .

[8]  Moharam Habibnejad Korayem,et al.  Inverse dynamic equation of motion for flexible link manipulators using recursive gibbs-appell formulation , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[9]  András Siegler Applied Dynamics and Cad of Manipulation Robots by M. Vukobratovic and V. Potkonjak Springer Verlag, Berlin, 1985, In: Scientific Fundamentals of Robotics Vol 6 , 1987, Robotica.

[10]  S. Saha Dynamics of Serial Multibody Systems Using the Decoupled Natural Orthogonal Complement Matrices , 1999 .

[11]  Paul J. A. Lever,et al.  Dynamic effects of rotatory inertia and shear deformation on flexible manipulators , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[12]  A. Shabana,et al.  Application of generalized Newton-Euler equations and recursive projection methods to dynamics of deformable multibody systems , 1989 .

[13]  Daniel J. Inman,et al.  On damping mechanisms in beams , 1991 .

[14]  D. E. Rosenthal High Performance Multibody Simulations via Symbolic Equation Manipulation and Kane's Method , 1986 .

[15]  F. Park,et al.  Symbolic formulation of closed chain dynamics in independent coordinates , 1999 .

[16]  L. Wang,et al.  Recursive computations of kinematic and dynamic equations for mechanical manipulators , 1985, IEEE J. Robotics Autom..

[17]  R. Singh,et al.  Dynamics of flexible bodies in tree topology - A computer oriented approach , 1985 .

[18]  Alessandro De Luca,et al.  A modified newton-euler method for dynamic computations in robot fault detection and control , 2009, 2009 IEEE International Conference on Robotics and Automation.

[19]  Ding-guo Zhang,et al.  Recursive Lagrangian dynamic modeling and simulation of multi-link spatial flexible manipulator arms , 2009 .

[20]  Guanrong Chen,et al.  Mathematical modeling for kinematics and dynamics of certain single flexible-link robot arms , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[21]  Yueh-Jaw Lin,et al.  Shear deformation effect in design considerations of flexible manipulators , 1993, Robotica.

[22]  Moharam Habibnejad Korayem,et al.  Automated fast symbolic modeling of robotic manipulators with compliant links , 1995 .

[23]  Gholamreza Vossoughi,et al.  Assisted passive snake-like robots: conception and dynamic modeling using Gibbs–Appell method , 2008, Robotica.

[24]  Javier Cuadrado,et al.  Performance and Application Criteria of Two Fast Formulations for Flexible Multibody Dynamics , 2007 .

[25]  K. Desoyer,et al.  Recursive formulation for the analytical or numerical application of the Gibbs-Appell method to the dynamics of robots , 1989, Robotica.

[26]  Daniel J. Inman,et al.  Bending and shear damping in beams: Frequency domain estimation techniques , 1991 .

[27]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[28]  Vicente Mata,et al.  Serial-robot dynamics algorithms for moderately large numbers of joints , 2002 .

[29]  T. S. Sankar,et al.  A systematic method of dynamics for flexible robot manipulators , 1992, J. Field Robotics.

[30]  Yunn-Lin Hwang,et al.  Recursive Newton–Euler formulation for flexible dynamic manufacturing analysis of open-loop robotic systems , 2006 .

[31]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[32]  G. R. Heppler,et al.  A Timoshenko model of a flexible slewing link , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[33]  L. Meirovitch,et al.  Hybrid equations of motion for flexible multibody systems using quasicoordinates , 1995 .

[34]  F.-Y. Wang,et al.  Influences of Rotatory Inertia, Shear and Loading on Vibrations of Flexible Manipulators , 1994 .

[35]  Subir Kumar Saha,et al.  A recursive, numerically stable, and efficient simulation algorithm for serial robots , 2007 .

[36]  Ali Meghdari,et al.  A recursive approach for the analysis of snake robots using Kane's equations , 2006, Robotica.

[37]  A. de Boer,et al.  Development and validation of a linear recursive "order-n" algorithm for the simulation of flexible space manipulator dynamics , 1992 .

[38]  E. Haug,et al.  A recursive formulation for flexible multibody dynamics, Part I: open-loop systems , 1988 .

[39]  Moharam Habibnejad Korayem,et al.  Application of symbolic manipulation to inverse dynamics and kinematics of elastic robots , 1994 .

[40]  R. Nadira,et al.  A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators , 1986 .

[41]  A. Shabana Dynamics of Flexible Bodies Using Generalized Newton-Euler Equations , 1990 .

[42]  Max Q.-H. Meng,et al.  Influence of shear, rotary inertia on the dynamic characteristics of flexible manipulators , 1999, 1999 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM 1999). Conference Proceedings (Cat. No.99CH36368).

[43]  Ph. D. Miomir Vukobratović D. Sc.,et al.  Applied Dynamics and CAD of Manipulation Robots , 1985, Communications and Control Engineering Series.

[44]  E. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .

[45]  Guanrong Chen,et al.  Mathematical modeling and fuzzy control of a flexible-link robot arm , 1998 .

[46]  Wisama Khalil,et al.  Dynamic Modeling of Robots using Recursive Newton-Euler Techniques , 2010, ICINCO.

[47]  Alan S. Morris,et al.  Inclusion of shear deformation term to improve accuracy in flexible-link robot modelling , 1996 .

[48]  Imre J. Rudas,et al.  Efficient recursive algorithm for inverse dynamics , 1993 .

[49]  S. Provenzano,et al.  Inverse dynamic problem in robots using Gibbs-Appell equations , 2002, Robotica.