Factorization and Resultants of Partial Differential Operators

Comparatively little is known about commutative rings of partial differential operators, while in the ordinary case, concrete examples and an algebraic(-geometric) structure can be algorithmically determined for large classes. In this note, by the calculation of the partial μ-shifted differential resultant which we defined in a previous paper, we produce algebraic equations of spectral surfaces for commutative rings in two variables, and Darboux transformations of Airy-type operators that correspond to morphisms of surfaces. There are, however, many elementary differential-algebraic statements that we only observe experimentally, thus we offer open questions which seem to us quite significant in differential algebra, and access to Mathematica code to enable further experimentation.

[1]  Hitchin systems at low genera , 1998, hep-th/9803101.

[2]  Michael Rosen,et al.  Number Theory in Function Fields , 2002 .

[3]  E. Previato Multivariable Burchnall–Chaundy theory , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  A. Mironov A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2 , 2004 .

[5]  J. Dixmier Sur les algèbres de Weyl , 1968 .

[6]  J. Rafael Sendra,et al.  Corrigendum to "Linear complete differential resultants and the implicitization of linear DPPEs" [J. Symbolic Comput. 45(3) March (2010) 324-341] , 2011, J. Symb. Comput..

[7]  H. Knörrer,et al.  The geometry of algebraic Fermi curves , 1992 .

[8]  A. Nakayashiki Structure of Baker-Akhiezer modules of principally polarized Abelian varieties, commuting partial differential operators and associated integrable systems , 1991 .

[10]  G. A. Latham,et al.  Higher Rank Darboux Transformations , 1994 .

[11]  E. Previato,et al.  On the Hitchin system , 1994, alg-geom/9410015.

[12]  Hyman Bass,et al.  Selected works of Ellis Kolchin with commentary , 1999 .

[13]  Igor Krichever,et al.  METHODS OF ALGEBRAIC GEOMETRY IN THE THEORY OF NON-LINEAR EQUATIONS , 1977 .

[14]  Giuseppa Carrà Ferro A Resultant Theory for Ordinary Algebraic Differential Equations , 1997, AAECC.

[15]  G. A. Latham,et al.  Darboux Transformations for Higher-Rank Kadomtsev—Petviashvili and Krichever—Novikov Equations , 1995 .

[16]  A. Veselov,et al.  Commutative rings of partial differential operators and Lie algebras , 1990 .

[17]  David Mumford,et al.  Complex projective varieties , 1995 .

[18]  Generalized Lamé Operators , 2002, math/0212029.

[19]  F. S. Macaulay,et al.  The Algebraic Theory of Modular Systems , 1972 .

[20]  Quantum integrable systems and differential Galois theory , 1996, alg-geom/9607012.

[21]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[22]  Darboux Transformations of Bispectral Quantum Integrable Systems , 1998, math-ph/9806002.

[23]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators , 1928 .

[24]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[25]  Jürgen Moser,et al.  On a class of polynomials connected with the Korteweg-deVries equation , 1978 .

[26]  On a Ring of Formal Pseudo-differential Operators , 1999, math/9911098.

[27]  J. L. Burchnall,et al.  Commutative Ordinary Differential Operators. II. The Identity P$^{n}$ = Q$^{m}$ , 1931 .

[28]  J. Rafael Sendra,et al.  Linear complete differential resultants and the implicitization of linear DPPEs , 2010, J. Symb. Comput..

[30]  L. Makar-Limanov On automorphisms of Weyl algebra , 1984 .