Transport Map sampling with PGD model reduction for fast dynamical Bayesian data assimilation

The motivation of this work is to address real‐time sequential inference of parameters with a full Bayesian formulation. First, the proper generalized decomposition (PGD) is used to reduce the computational evaluation of the posterior density in the online phase. Second, Transport Map sampling is used to build a deterministic coupling between a reference measure and the posterior measure. The determination of the transport maps involves the solution of a minimization problem. As the PGD model is quasi‐analytical and under a variable separation form, the use of gradient and Hessian information speeds up the minimization algorithm. Eventually, uncertainty quantification on outputs of interest of the model can be easily performed due to the global feature of the PGD solution over all coordinate domains. Numerical examples highlight the performance of the method.

[1]  Costas Papadimitriou,et al.  The use of updated robust reliability measures in stochastic dynamical systems , 2013 .

[2]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[3]  Pierre Feissel,et al.  Identification strategy in the presence of corrupted measurements , 2005 .

[4]  R. Fletcher,et al.  Practical Methods of Optimization: Fletcher/Practical Methods of Optimization , 2000 .

[5]  Nathan Mendes,et al.  Estimation of temperature-dependent thermal conductivity using proper generalised decomposition for building energy management , 2016 .

[6]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[7]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[8]  N. Mendes,et al.  Proper Generalized Decomposition model reduction in the Bayesian framework for solving inverse heat transfer problems , 2017 .

[9]  Wang-Ji Yan,et al.  A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups , 2015 .

[10]  Francesco Ubertini,et al.  Estimation of elastic constants of thick laminated plates within a Bayesian framework , 2007 .

[11]  Andrea Manzoni,et al.  Accurate Solution of Bayesian Inverse Uncertainty Quantification Problems Combining Reduced Basis Methods and Reduction Error Models , 2016, SIAM/ASA J. Uncertain. Quantification.

[12]  David Néron,et al.  Dealing with a nonlinear material behavior and its variability through PGD models: Application to reinforced concrete structures , 2019, Finite Elements in Analysis and Design.

[13]  Hermann G. Matthies,et al.  Parameter Identification in a Probabilistic Setting , 2012, ArXiv.

[14]  Pradipta Sarkar,et al.  Sequential Monte Carlo Methods in Practice , 2003, Technometrics.

[15]  A. Vautrin,et al.  Bayesian Identification of Elastic Constants in Multi-Directional Laminate from Moiré Interferometry Displacement Fields , 2012, Experimental Mechanics.

[16]  Sandip Sinharay,et al.  ASSESSING CONVERGENCE OF THE MARKOV CHAIN MONTE CARLO ALGORITHMS: A REVIEW , 2003 .

[17]  F. Chinesta,et al.  A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .

[18]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[19]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[20]  Gianluigi Rozza,et al.  Reduced Basis Methods for Uncertainty Quantification , 2017, SIAM/ASA J. Uncertain. Quantification.

[21]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[22]  Ludovic Chamoin,et al.  Real‐time updating of structural mechanics models using Kalman filtering, modified constitutive relation error, and proper generalized decomposition , 2016 .

[23]  Hermann G. Matthies,et al.  Inverse Problems in a Bayesian Setting , 2015, 1511.00524.

[24]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[25]  Y. Marzouk,et al.  An introduction to sampling via measure transport , 2016, 1602.05023.

[26]  A. Nouy A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .

[27]  Youssef M. Marzouk,et al.  Bayesian inference with optimal maps , 2011, J. Comput. Phys..

[28]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[29]  David Néron,et al.  Virtual charts of solutions for parametrized nonlinear equations , 2014 .

[30]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[31]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[32]  Marc Bonnet,et al.  Inverse problems in elasticity , 2005 .

[33]  Iason Papaioannou,et al.  Bayesian analysis of rare events , 2016, J. Comput. Phys..

[34]  Ludovic Chamoin,et al.  Parameter identification and model updating in the context of nonlinear mechanical behaviors using a unified formulation of the modified Constitutive Relation Error concept , 2019 .

[35]  Hermann G. Matthies,et al.  A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements , 2012 .

[36]  M. Reynier,et al.  Updating of finite element models using vibration tests , 1994 .

[37]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[38]  Costas Papadimitriou,et al.  Sequential importance sampling for structural reliability analysis , 2016 .

[39]  C. Villani Optimal Transport: Old and New , 2008 .

[40]  Ludovic Chamoin,et al.  A posteriori error estimation and adaptive strategy for PGD model reduction applied to parametrized linear parabolic problems , 2017, 1801.07422.

[41]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[42]  Youssef M. Marzouk,et al.  Inference via Low-Dimensional Couplings , 2017, J. Mach. Learn. Res..

[43]  Pedro Díez,et al.  Proper generalized decomposition solution of the parameterized Helmholtz problem: application to inverse geophysical problems , 2017 .

[44]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[45]  Ludovic Chamoin,et al.  Fast model updating coupling Bayesian inference and PGD model reduction , 2018, Computational Mechanics.

[46]  Frederica Darema,et al.  Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements , 2004, International Conference on Computational Science.

[47]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[48]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[49]  Parag A. Pathak,et al.  Massachusetts Institute of Technology , 1964, Nature.

[50]  Pierre Ladevèze,et al.  On the verification of model reduction methods based on the proper generalized decomposition , 2011 .

[51]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[52]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[53]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Second Edition , 2006 .

[54]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[55]  Laurent Champaney,et al.  Fast validation of stochastic structural models using a PGD reduction scheme , 2013 .

[56]  J. Beck Bayesian system identification based on probability logic , 2010 .

[57]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .