Investigation of nonlinearity in hyperspectral remotely sensed imagery — a nonlinear time series analysis approach

Hyperspectral remotely sensed imagery is often modeled and processed by algorithms assuming that the imagery is a realization of a Gaussian linear stochastic process. These algorithms include some methods for feature extraction, spectral mixture analysis, and spatial analysis. The linear assumption, however, may not be realistic since there are factors that may introduce nonlinearities during the formulation of hyperspectral imagery. The existence of nonlinearity has a negative impact on the effectiveness and accuracy of information extraction. In this study, we propose a method to investigate the existence of nonlinearity in hyperspectral data, represented by a 4m AVIRIS image acquired over an area of coastal forests on Vancouver Island. The proposed method is based on a statistical test using surrogate data, an approach originally introduced in nonlinear time series analysis. High-order autocorrelations are used as the discriminating statistic to evaluate the differences between the hyperspectral data and their surrogates. Instead of conducting a statistical test in time domain as is used in typical time series analysis, we did it in spatial and spectral domains. The investigation revealed that the existence of nonlinearity in hyperspectral data is evident in spectral domain, but not in the spatial domain.

[1]  Brian Staab Investigation of Noise and Dimensionality Reduction Transforms on Hyperspectral Data as Applied to , 2005 .

[2]  Nicholas C. Coops,et al.  Estimating afternoon MODIS land surface temperatures (LST) based on morning MODIS overpass, location and elevation information , 2007 .

[3]  R. E. Roger A faster way to compute the noise-adjusted principal components transform matrix , 1994, IEEE Trans. Geosci. Remote. Sens..

[4]  Chein-I Chang,et al.  Unsupervised interference rejection approach to target detection and classification for hyperspectral imagery , 1998 .

[5]  Mike E. Davies,et al.  Noise reduction schemes for chaotic time series , 1994 .

[6]  Henry D I Abarbanel,et al.  False neighbors and false strands: a reliable minimum embedding dimension algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[8]  Dan Lobb,et al.  Flight experience of the Compact High-Resolution Imaging Spectrometer (CHRIS) , 2004, SPIE Optics + Photonics.

[9]  W. Farrand Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique , 1997 .

[10]  M. Cho,et al.  A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method , 2006 .

[11]  Benjamin A. Stern,et al.  Interactive Data Language , 2000 .

[12]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[13]  Tian Han,et al.  Estimating Dimensionality of Hyperspectral Data Using False Neighbour Method , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[14]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[15]  Nicholas C. Coops,et al.  Development of a large area biodiversity monitoring system driven by remote sensing , 2007 .

[16]  Tian Han,et al.  Impacts of lossy compression on hyperspectral products for forestry , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Jeffrey A. Cardille,et al.  Monitoring Canada’s forests. Part 2: National forest fragmentation and pattern , 2008 .

[18]  David A. Landgrebe,et al.  Hyperspectral data analysis and supervised feature reduction via projection pursuit , 1999, IEEE Trans. Geosci. Remote. Sens..

[19]  Schreiber,et al.  Extremely simple nonlinear noise-reduction method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Tian Han,et al.  Detection and correction of abnormal pixels in Hyperion images , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[21]  J. B. Lee,et al.  Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform , 1990 .

[22]  P. Grassberger,et al.  On noise reduction methods for chaotic data. , 1993, Chaos.

[23]  Hao Chen,et al.  Processing Hyperion and ALI for forest classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[24]  Pablo J. Zarco-Tejada,et al.  Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .

[25]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[26]  Richard Bamler,et al.  ARES: a new reflective/emissive imaging spectrometer for terrestrial applications , 2003, SPIE Remote Sensing.

[27]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[28]  M. Paluš Testing for nonlinearity using redundancies: quantitative and qualitative aspects , 1994, comp-gas/9406002.

[29]  Ronald J. Hall,et al.  An approach for edge matching large-area satellite image classifications , 2007 .

[30]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[31]  Hsu,et al.  Local-geometric-projection method for noise reduction in chaotic maps and flows. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  Tian Han,et al.  Investigation of Nonlinearity in Hyperspectral Imagery Using Surrogate Data Methods , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[33]  S. Ustin,et al.  Mapping nonnative plants using hyperspectral imagery , 2003 .

[34]  John F. Arnold,et al.  Reliably estimating the noise in AVIRIS hyperspectral images , 1996 .

[35]  R. Jenssen,et al.  1 THE HYMAP TM AIRBORNE HYPERSPECTRAL SENSOR : THE SYSTEM , CALIBRATION AND PERFORMANCE , 1998 .

[36]  F. Takens Detecting strange attractors in turbulence , 1981 .

[37]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[38]  David G. Goodenough,et al.  Forest chemistry mapping with hyperspectral data , 2003, IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003.

[39]  Pierre Goovaerts,et al.  Geostatistical and local cluster analysis of high resolution hyperspectral imagery for detection of anomalies , 2005 .

[40]  Qingxi Tong,et al.  Development and application of hyperspectral remote sensing in China , 1998, Asia-Pacific Environmental Remote Sensing.

[41]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[42]  H. Deutsch Principle Component Analysis , 2004 .

[43]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[44]  Nicholas C. Coops,et al.  The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance , 2008 .

[45]  Nigel P. Fox,et al.  Progress in Field Spectroscopy , 2006 .

[46]  Darryl J. Downing,et al.  Univariate Tests for Time Series Models , 1993 .

[47]  Liangpei Zhang,et al.  An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery , 2006, IEEE Trans. Geosci. Remote. Sens..

[48]  T. Schreiber,et al.  Discrimination power of measures for nonlinearity in a time series , 1997, chao-dyn/9909043.

[49]  Jincheng Gao,et al.  The effect of solar illumination angle and sensor view angle on observed patterns of spatial structure in tallgrass prairie , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[50]  S. P. Garcia,et al.  Nearest neighbor embedding with different time delays. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Tian Han,et al.  An Efficient Protocol to Process Landsat Images for Change Detection With Tasselled Cap Transformation , 2007, IEEE Geoscience and Remote Sensing Letters.

[52]  Schreiber,et al.  Noise reduction in chaotic time-series data: A survey of common methods. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  A. Skidmore,et al.  Smoothing vegetation spectra with wavelets , 2004 .

[54]  L. Cao Practical method for determining the minimum embedding dimension of a scalar time series , 1997 .

[55]  M. Schlerf,et al.  Remote sensing of forest biophysical variables using HyMap imaging spectrometer data , 2005 .

[56]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[57]  Luis O. Jimenez-Rodriguez,et al.  Unsupervised Linear Feature-Extraction Methods and Their Effects in the Classification of High-Dimensional Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Daniel W. Wilson,et al.  Optical design of a coastal ocean imaging spectrometer. , 2008, Optics express.

[59]  David A. Landgrebe,et al.  Analyzing High Dimensional Data , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[60]  David G. Goodenough,et al.  Comparing and validating spectral unmixing algorithms with AVIRIS imagery , 2008 .

[61]  Tian Han,et al.  Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE) , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[62]  Piotr Indyk,et al.  Nearest Neighbors in High-Dimensional Spaces , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[63]  I. F. Blake,et al.  The linear random process , 1968 .

[64]  David A. Landgrebe,et al.  Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data , 1999 .

[65]  Amit Banerjee,et al.  A support vector method for anomaly detection in hyperspectral imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[66]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[67]  Schreiber,et al.  Nonlinear noise reduction: A case study on experimental data. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Gail P. Anderson,et al.  Analysis of Hyperion data with the FLAASH atmospheric correction algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[69]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[70]  Thomas L. Ainsworth,et al.  Improved Manifold Coordinate Representations of Large-Scale Hyperspectral Scenes , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[71]  Carol J. Bruegge,et al.  Airborne Imaging Spectrometer-2: Radiometric Spectral Characteristics And Comparison Of Ways To Compensate For The Atmosphere , 1987, Optics & Photonics.

[72]  David A. Landgrebe,et al.  Hierarchical classifier design in high-dimensional numerous class cases , 1991, IEEE Trans. Geosci. Remote. Sens..

[73]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[74]  Jiang Li,et al.  Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[75]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[76]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[77]  Dimitris Kugiumtzis,et al.  Surrogate Data Test on Time Series , 2002 .

[78]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[79]  Chein-I Chang,et al.  Unsupervised hyperspectral image analysis with projection pursuit , 2000, IEEE Trans. Geosci. Remote. Sens..

[80]  Shen-En Qian,et al.  Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[81]  R. Nalepka,et al.  Estimating the proportions of objects within a single resolution element of a multispectral scanner. , 1971 .

[82]  Qiong Jackson,et al.  An adaptive classifier design for high-dimensional data analysis with a limited training data set , 2001, IEEE Trans. Geosci. Remote. Sens..

[83]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[84]  L. Eklundh,et al.  A Comparative analysis of standardised and unstandardised Principal Component Analysis in remote sensing , 1993 .

[85]  U. Benz,et al.  The EnMAP hyperspectral imager—An advanced optical payload for future applications in Earth observation programmes , 2006 .

[86]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[87]  Robert W. Basedow,et al.  HYDICE system: implementation and performance , 1995, Defense, Security, and Sensing.

[88]  David A. Landgrebe,et al.  An analytical model of Earth-observational remote sensing systems , 1991, IEEE Trans. Syst. Man Cybern..

[89]  P. Jarecke,et al.  Overview of the Hyperion Imaging Spectrometer for the NASA EO-1 mission , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[90]  R. E. Roger Principal Components transform with simple, automatic noise adjustment , 1996 .

[91]  Guillermo Sapiro,et al.  Spatially Coherent Nonlinear Dimensionality Reduction and Segmentation of Hyperspectral Images , 2007, IEEE Geoscience and Remote Sensing Letters.

[92]  David G. Goodenough,et al.  Hyperspectral endmember detection and unmixing based on linear programming , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[93]  Paul Scheunders,et al.  Wavelet thresholding of multivalued images , 2004, IEEE Transactions on Image Processing.

[94]  Hao Chen,et al.  Hyperspectral feature selection for forest classification , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[95]  S. Sandmeier,et al.  The potential of hyperspectral bidirectional reflectance distribution function data for grass canopy characterization , 1999 .

[96]  Wallace M. Porter,et al.  A System Overview Of The Airborne Visible/Infrared Imaging Spectrometer (Aviris) , 1987, Optics & Photonics.

[97]  Thomas L. Ainsworth,et al.  Exploiting manifold geometry in hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[98]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[99]  Qian Du,et al.  Automatic target recognition for hyperspectral imagery using high-order statistics , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[100]  D. Kugiumtzis,et al.  Test your surrogate data before you test for nonlinearity. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[101]  Joanne C. White,et al.  Integrating profiling LIDAR with Landsat data for regional boreal forest canopy attribute estimation and change characterization , 2007 .

[102]  Qian Du,et al.  Interference and noise-adjusted principal components analysis , 1999, IEEE Trans. Geosci. Remote. Sens..