Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors

Abstract Carbon nanotube field effect transistors (CNTFETs) have gained remarkable attention in modern fields, as one of the promising candidates for replacing conventional MOSFETs technology at the end of the roadmap. In this regard, this article presents high-performance complementary logic gates based on ballistic gate-all-around CNTFETs utilizing a novel improved analytical model. This is done by considering the effects of carrier density, quantum capacitance, and the number of channels, which are highly suitable for logic applications. For this purpose, the polarities of CNTFETs are switched between n- and p-type by harnessing its geometrical properties (i.e. the dielectric materials). In the present paper the semi-analytical method is utilized to design complementary logic gates including inverter, AND, and XOR. To benchmark the structure, the main parameters including propagation delay, power delay product, noise margin, and static and dynamic power consumptions are calculated. Then appropriate values are achieved and then used in a simple half adder. It is shown that by applying a small external voltage in the order of 0.8′ V, the enhanced design metrics including static and dynamic powers can be achieved as Ps = 25.12 pW, and Pd = 40.62 nW, respectively. To verify the obtained results, they are compared with those of numerical and experimental models. Our results highlight the use of complementary gate-all-around CNTFET transistors as a promising platform for computing applications.

[1]  Timothy K Lu,et al.  Synthetic circuits integrating logic and memory in living cells , 2013, Nature Biotechnology.

[2]  N. Mohankumar,et al.  On the very accurate numerical evaluation of the Generalized Fermi-Dirac Integrals , 2016, Comput. Phys. Commun..

[3]  G. Cuniberti,et al.  Towards an optimal contact metal for CNTFETs. , 2016, Nanoscale.

[4]  H. Wong,et al.  Carbon Nanotube And Graphene Device Physics , 2010 .

[5]  Ali Mir,et al.  Design and Simulation of Room-Temperature Logic Functions Using a Three-Gate Single Electron Transistor in Silicon Quantum Dot , 2017 .

[6]  M. Moradian,et al.  Fabrication new PES-based mixed matrix nanocomposite membranes using polycaprolactone modified carbon nanotubes as the additive: Property changes and morphological studies , 2011 .

[7]  Mohammad Hossein Moaiyeri,et al.  Performance analysis and enhancement of 10-nm GAA CNTFET-based circuits in the presence of CNT-metal contact resistance , 2017, Journal of Computational Electronics.

[8]  A. Mir,et al.  All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal , 2016 .

[9]  Michael Schroter,et al.  Toward Linearity in Schottky Barrier CNTFETs , 2015, IEEE Transactions on Nanotechnology.

[10]  M. Marir-Benabbas,et al.  Modeling of sub-band and diameter effect in carrier concentration of CNTFET , 2014 .

[11]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[12]  A. Shaker,et al.  Gate dielectric constant engineering for suppression of ambipolar conduction in CNTFETs , 2015 .

[13]  A. Mir,et al.  Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect , 2018, Applied Surface Science.

[14]  H. Wong,et al.  A Compact Virtual-Source Model for Carbon Nanotube FETs in the Sub-10-nm Regime—Part II: Extrinsic Elements, Performance Assessment, and Design Optimization , 2015, IEEE Transactions on Electron Devices.

[15]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[16]  K. Shah,et al.  Computational comparative study of substitutional, endo and exo BN Co-Doped single walled carbon nanotube system , 2016 .

[17]  Rasmita Sahoo,et al.  Design of an efficient CNTFET using optimum number of CNT in channel region for logic gate implementation , 2015, 2015 International Conference on VLSI Systems, Architecture, Technology and Applications (VLSI-SATA).

[18]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[19]  Ali Mir,et al.  Realization of Ultra-Accurate and Compact All-Optical Photonic Crystal OR Logic Gate , 2016, IEEE Photonics Technology Letters.

[20]  A. Shaker,et al.  Influence of gate overlap engineering on ambipolar and high frequency characteristics of tunnel-CNTFET , 2015 .

[21]  M. R. K. Akanda,et al.  FEM Model of Wraparound CNTFET With Multi-CNT and Its Capacitance Modeling , 2013, IEEE Transactions on Electron Devices.

[22]  Effect of uniaxial strain on electrical properties of CNT-based junctionless field-effect transistor: Numerical study , 2016 .

[23]  Toshio Fukushima,et al.  Analytical computation of generalized Fermi-Dirac integrals by truncated Sommerfeld expansions , 2014, Appl. Math. Comput..

[24]  David J. Frank,et al.  Power-constrained CMOS scaling limits , 2002, IBM J. Res. Dev..

[25]  M. Sheikhi,et al.  Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces , 2017 .

[26]  M. Hersam,et al.  Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors , 2017, Scientific Reports.

[27]  Qian Wang,et al.  Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators , 2002, Nano Letters.

[28]  L. J. Sham,et al.  Spin-based logic in semiconductors for reconfigurable large-scale circuits , 2007, Nature.

[29]  John W. Mintmire,et al.  Universal Density of States for Carbon Nanotubes , 1998 .

[30]  David Harris,et al.  CMOS VLSI Design: A Circuits and Systems Perspective , 2004 .

[31]  J. Colinge,et al.  Silicon-on-insulator 'gate-all-around device' , 1990, International Technical Digest on Electron Devices.

[32]  M. Schroter,et al.  High-Frequency Ballistic Transport Phenomena in Schottky Barrier CNTFETs , 2012, IEEE Transactions on Electron Devices.

[33]  J. Titantah,et al.  Ab initio calculation of the energy-loss near-edge structure of some carbon allotropes: Comparison with n-diamond , 2010 .

[34]  M. Adeli,et al.  CARBON NANOTUBE-GRAFT-BLOCK COPOLYMERS CONTAINING SILVER NANOPARTICLES , 2009 .

[35]  Ross D. Hoehn,et al.  Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal , 2018, 1801.01939.

[36]  W. Mönch Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept , 2016 .

[37]  K. Xia,et al.  An all-metallic logic gate based on current-driven domain wall motion. , 2008, Nature nanotechnology.

[38]  K. R. Pasupathy,et al.  Low power, high speed carbon nanotube FET based level shifters for multi-VDD Systems-On-Chips , 2015 .

[39]  Mahmoud Farhang,et al.  High performance polarization-independent Quantum Dot Semiconductor Optical Amplifier with 22 dB fiber to fiber gain using Mode Propagation Tuning without additional polarization controller , 2017 .

[40]  S. Mirzakuchaki,et al.  Dependence of Carbon Nanotube Field Effect Transistors Performance on Doping Level of Channel at Different Diameters: On/off current ratio , 2012, 1207.2065.

[41]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[42]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .

[43]  A. Shaker,et al.  Performance and electrical characteristics of hybrid carbon nanotube field effect transistors , 2016 .

[44]  W. Haensch,et al.  Carbon nanotube complementary wrap-gate transistors. , 2013, Nano letters.

[45]  A. P. de Silva,et al.  Molecular logic and computing. , 2007, Nature nanotechnology.

[46]  Yuan Taur,et al.  CMOS design near the limit of scaling , 2002 .

[47]  S. Mirzakuchaki,et al.  High on/off current ratio in ballistic CNTFETs based on tuning the gate insulator parameters for different ambient temperatures , 2013 .

[48]  B. Raj,et al.  Design and analysis of a gate-all-around CNTFET-based SRAM cell , 2018 .

[49]  H.-S. Philip Wong,et al.  Carbon nanotube computer , 2013, Nature.

[50]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[51]  Toshio Fukushima,et al.  Precise and fast computation of inverse Fermi-Dirac integral of order 1/2 by minimax rational function approximation , 2015, Appl. Math. Comput..

[52]  M. Sheikhi,et al.  Analytical modeling of highly tunable giant lateral shift in total reflection of light beams from a graphene containing structure , 2017 .

[53]  Ali Farmani,et al.  Design of a High Extinction Ratio Tunable Graphene on White Graphene Polarizer , 2018, IEEE Photonics Technology Letters.

[54]  B. Streetman Solid State Electronic Devices: Global Edition , 2015 .

[55]  Balwinder Raj,et al.  Design and analysis of electrostatic doped Schottky barrier CNTFET based low power SRAM , 2017 .

[56]  H. Wong,et al.  An Analytical Derivation of the Density of States, Effective Mass, and Carrier Density for Achiral Carbon Nanotubes , 2008, IEEE Transactions on Electron Devices.

[57]  A. Biswas,et al.  Performance optimization of nanoscale junctionless transistors through varying device design parameters for ultra-low power logic applications , 2016 .

[58]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[59]  K. Shah,et al.  Negative differential resistance in BN co-doped coaxial carbon nanotube field effect transistor , 2016 .

[60]  S. Mirzakuchaki,et al.  Performance dependency on doping level of carbon nanotube for ballistic CNTFETs , 2013 .

[61]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[62]  W. Haensch,et al.  Toward high-performance digital logic technology with carbon nanotubes. , 2014, ACS nano.

[63]  Ali Farmani,et al.  Design of a tunable graphene plasmonic-on-white graphene switch at infrared range , 2017 .

[64]  Sven Mothes,et al.  Contact resistance extraction methods for short- and long-channel carbon nanotube field-effect transistors , 2016 .

[65]  B. Yang,et al.  Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET , 2008, IEEE Electron Device Letters.

[66]  Jianshi Tang,et al.  High-Performance Carbon Nanotube Complementary Logic With End-Bonded Contacts , 2017, IEEE Transactions on Electron Devices.