The Critical Node Detection Problem in networks: A survey

Abstract In networks, not all nodes have the same importance, and some are more important than others. The issue of finding the most important nodes in networks has been addressed extensively, particularly for nodes whose importance is related to network connectivity. These nodes are usually known as Critical Nodes. The Critical Node Detection Problem (CNDP) is the optimization problem that consists in finding the set of nodes, the deletion of which maximally degrades network connectivity according to some predefined connectivity metrics. Recently, this problem has attracted much attention, and depending on the predefined metric, different variants have been developed. In this survey, we review, classify and discuss several recent advances and results obtained for each variant, including theoretical complexity, exact solving algorithms, approximation schemes and heuristic approaches. We also prove new complexity results and induce some solving algorithms through relationships established between different variants.

[1]  Marco Di Summa,et al.  Branch and cut algorithms for detecting critical nodes in undirected graphs , 2012, Computational Optimization and Applications.

[2]  Sylvain Guillemot,et al.  FPT Algorithms for Path-Transversals and Cycle-Transversals Problems in Graphs , 2008, IWPEC.

[3]  Roberto Aringhieri,et al.  Polynomial and pseudo-polynomial time algorithms for different classes of the Distance Critical Node Problem , 2018, Discret. Appl. Math..

[4]  Celso C. Ribeiro,et al.  GRASP with Path-Relinking: Recent Advances and Applications , 2005 .

[5]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[6]  Devavrat Shah,et al.  Rumors in a Network: Who's the Culprit? , 2009, IEEE Transactions on Information Theory.

[7]  N. Christakis,et al.  Social Network Sensors for Early Detection of Contagious Outbreaks , 2010, PloS one.

[8]  Shou-De Lin,et al.  Finding influential mediators in social networks , 2011, WWW.

[9]  Dániel Marx,et al.  Obtaining a Planar Graph by Vertex Deletion , 2007, Algorithmica.

[10]  Vladimir Gurvich,et al.  On Short Paths Interdiction Problems: Total and Node-Wise Limited Interdiction , 2008, Theory of Computing Systems.

[11]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, Algorithmica.

[12]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[13]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[14]  Curt Jones,et al.  Finding Good Approximate Vertex and Edge Partitions is NP-Hard , 1992, Inf. Process. Lett..

[15]  V. S. Subrahmanian,et al.  Covertness Centrality in Networks , 2012, 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.

[16]  Panos M. Pardalos,et al.  Robust Optimization of Graph Partitioning and Critical Node Detection in Analyzing Networks , 2010, COCOA.

[17]  Hamamache Kheddouci,et al.  Least Squares Method for Diffusion Source Localization in Complex Networks , 2016, COMPLEX NETWORKS.

[18]  Nam P. Nguyen,et al.  On the Discovery of Critical Links and Nodes for Assessing Network Vulnerability , 2013, IEEE/ACM Transactions on Networking.

[19]  M. Macy,et al.  Complex Contagions and the Weakness of Long Ties1 , 2007, American Journal of Sociology.

[20]  P. Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[21]  Gary Chartrand,et al.  Introduction to Graph Theory , 2004 .

[22]  Martin Vetterli,et al.  Locating the Source of Diffusion in Large-Scale Networks , 2012, Physical review letters.

[23]  My T. Thai,et al.  Assessing attack vulnerability in networks with uncertainty , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[24]  Christian Komusiewicz,et al.  Parameterized complexity of critical node cuts , 2016, Theor. Comput. Sci..

[25]  Wayne Pullan,et al.  Heuristic identification of critical nodes in sparse real-world graphs , 2015, J. Heuristics.

[26]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[27]  Peter Sanders,et al.  Recent Advances in Graph Partitioning , 2013, Algorithm Engineering.

[28]  S. Safra,et al.  On the hardness of approximating minimum vertex cover , 2005 .

[29]  Neng Fan,et al.  Economic analysis of the N−k power grid contingency selection and evaluation by graph algorithms and interdiction methods , 2011 .

[30]  Fanica Gavril,et al.  Maximum weight independent sets and cliques in intersection graphs of filaments , 2000, Inf. Process. Lett..

[31]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[32]  Roberto Aringhieri,et al.  A preliminary analysis of the Distance Based Critical Node Problem , 2016, Electron. Notes Discret. Math..

[33]  My T. Thai,et al.  Adaptive algorithms for detecting critical links and nodes in dynamic networks , 2012, MILCOM 2012 - 2012 IEEE Military Communications Conference.

[34]  Reuven Cohen,et al.  Efficient immunization strategies for computer networks and populations. , 2002, Physical review letters.

[35]  Wayne Goddard,et al.  A Survey of Integrity , 1992, Discret. Appl. Math..

[36]  Andrew R. Leach,et al.  Structure-based Drug Discovery , 2007 .

[37]  Stefano Panzieri,et al.  Finding critical nodes in infrastructure networks , 2017, Int. J. Crit. Infrastructure Prot..

[38]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[39]  Vasant Honavar,et al.  Characterization of Protein–Protein Interfaces , 2008, The protein journal.

[40]  Tommy Liljefors,et al.  Textbook of drug design and discovery , 2016 .

[41]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[42]  Angelika Hellwig,et al.  Maximally edge-connected and vertex-connected graphs and digraphs: A survey , 2008, Discret. Math..

[43]  Egon Balas,et al.  On graphs with polynomially solvable maximum-weight clique problem , 1989, Networks.

[44]  Hans L. Bodlaender,et al.  Treewidth: Characterizations, Applications, and Computations , 2006, WG.

[45]  Eduardo L. Pasiliao,et al.  Critical nodes for distance‐based connectivity and related problems in graphs , 2015, Networks.

[46]  Panos M. Pardalos,et al.  Cardinality-Constrained Critical Node Detection Problem , 2011 .

[47]  Ryan B. Hayward,et al.  Weakly triangulated graphs , 1985, J. Comb. Theory B.

[48]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[49]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..

[50]  Madhav V. Marathe,et al.  Finding Critical Nodes for Inhibiting Diffusion of Complex Contagions in Social Networks , 2010, ECML/PKDD.

[51]  Garry L Corthals,et al.  Identification of Protein Interactions Involved in Cellular Signaling , 2013, Molecular & Cellular Proteomics.

[52]  David A. Bader,et al.  Approximating Betweenness Centrality , 2007, WAW.

[53]  Marco Di Summa,et al.  Complexity of the critical node problem over trees , 2011, Comput. Oper. Res..

[54]  T. Stützle,et al.  Iterated Local Search: Framework and Applications , 2018, Handbook of Metaheuristics.

[55]  Carlos Prieto,et al.  APID: Agile Protein Interaction DataAnalyzer , 2006, Nucleic Acids Res..

[56]  Roberto Aringhieri,et al.  Local search metaheuristics for the critical node problem , 2016, Networks.

[57]  Giuseppe F. Italiano,et al.  Computing Critical Nodes in Directed Graphs , 2017, ALENEX.

[58]  Eduardo L. Pasiliao,et al.  An integer programming framework for critical elements detection in graphs , 2014, J. Comb. Optim..

[59]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[60]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[61]  Maria Paola Scaparra,et al.  Performance Analysis of Single and Multi-objective Approaches for the Critical Node Detection Problem , 2017 .

[62]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[63]  Mingyu Xiao,et al.  Simple and Improved Parameterized Algorithms for Multiterminal Cuts , 2009, Theory of Computing Systems.

[64]  Subhash Khot,et al.  Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[65]  Michael Langberg,et al.  The multi-multiway cut problem , 2007, Theor. Comput. Sci..

[66]  Mario Ventresca,et al.  Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem , 2012, Comput. Oper. Res..

[67]  Dániel Marx Chordal Deletion is Fixed-Parameter Tractable , 2008, Algorithmica.

[68]  Stefano Panzieri,et al.  Critical node detection based on attacker preferences , 2016, 2016 24th Mediterranean Conference on Control and Automation (MED).

[69]  My T. Thai,et al.  Detecting Critical Nodes in Interdependent Power Networks for Vulnerability Assessment , 2013, IEEE Transactions on Smart Grid.

[70]  Mario Ventresca,et al.  A Region Growing Algorithm for Detecting Critical Nodes , 2014, COCOA.

[71]  Madhumangal Pal,et al.  Interval Tree and its Applications 1 , 2009 .

[72]  Hamamache Kheddouci,et al.  Component-cardinality-constrained critical node problem in graphs , 2016, Discret. Appl. Math..

[73]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[74]  My T. Thai,et al.  Precise structural vulnerability assessment via mathematical programming , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[75]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[76]  David S. Johnson,et al.  Some simplified NP-complete problems , 1974, STOC '74.

[77]  Fred W. Glover,et al.  Exterior Path Relinking for Zero-One Optimization , 2014, Int. J. Appl. Metaheuristic Comput..

[78]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[79]  Valdis E. Krebs,et al.  Uncloaking Terrorist Networks , 2002, First Monday.

[80]  Samarth Swarup,et al.  Blocking Simple and Complex Contagion by Edge Removal , 2013, 2013 IEEE 13th International Conference on Data Mining.

[81]  Éva Tardos,et al.  Influential Nodes in a Diffusion Model for Social Networks , 2005, ICALP.

[82]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[83]  Panos M. Pardalos,et al.  Detecting critical nodes in sparse graphs , 2009, Comput. Oper. Res..

[84]  Bruce A. Reed,et al.  Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width , 2003, J. Algorithms.

[85]  Uffe Kock Wiil,et al.  Node Removal in Criminal Networks , 2011, 2011 European Intelligence and Security Informatics Conference.

[86]  P. Pardalos,et al.  MANAGING NETWORK RISK VIA CRITICAL NODE IDENTIFICATION , 2007 .

[87]  Young-Soo Myung,et al.  A cutting plane algorithm for computing k , 2004, Eur. J. Oper. Res..

[88]  Eduardo L. Pasiliao,et al.  Exact identification of critical nodes in sparse networks via new compact formulations , 2014, Optim. Lett..

[89]  Jiong Guo,et al.  Fixed-parameter tractability and data reduction for multicut in trees , 2005 .

[90]  Harry Eugene Stanley,et al.  Robustness of interdependent networks under targeted attack , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[91]  Roberto Aringhieri,et al.  A general Evolutionary Framework for different classes of Critical Node Problems , 2016, Eng. Appl. Artif. Intell..

[92]  Beatrice M. Ombuki-Berman,et al.  The bi-objective critical node detection problem , 2018, Eur. J. Oper. Res..

[93]  Narsingh Deo,et al.  Node-Deletion NP-Complete Problems , 1979, SIAM J. Comput..

[94]  Dalaijargal Purevsuren,et al.  Heuristic Algorithm for Identifying Critical Nodes in Graphs , 2016 .

[95]  H. W. Corley,et al.  Most vital links and nodes in weighted networks , 1982, Oper. Res. Lett..

[96]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[97]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[98]  Hao Yuan,et al.  Controlling Infection by Blocking Nodes and Links Simultaneously , 2011, WINE.

[99]  T. Pawson,et al.  Protein-protein interactions define specificity in signal transduction. , 2000, Genes & development.

[100]  Rolf Niedermeier,et al.  Complexity and exact algorithms for vertex multicut in interval and bounded treewidth graphs , 2008, Eur. J. Oper. Res..

[101]  Jin-Kao Hao,et al.  A fast heuristic algorithm for the critical node problem , 2017, GECCO.

[102]  Egon Balas,et al.  The vertex separator problem: a polyhedral investigation , 2005, Math. Program..

[103]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[104]  Viggo Kann,et al.  Hardness of Approximating Problems on Cubic Graphs , 1997, CIAC.

[105]  Alexander Grigoriev,et al.  Complexity and approximability of the k‐way vertex cut , 2014, Networks.

[106]  Stephen P. Borgatti,et al.  Identifying sets of key players in a social network , 2006, Comput. Math. Organ. Theory.

[107]  Panos M. Pardalos,et al.  The wireless network jamming problem , 2007, J. Comb. Optim..

[108]  Panos M. Pardalos,et al.  Studying connectivity properties in human protein-protein interaction network in cancer pathway , 2012 .

[109]  Paulo Shakarian,et al.  Shaping Operations to Attack Robust Terror Networks , 2012, 2012 International Conference on Social Informatics.

[110]  Mario Ventresca,et al.  A Fast Greedy Algorithm for the Critical Node Detection Problem , 2014, COCOA.

[111]  Taieb Znati,et al.  On Approximation of New Optimization Methods for Assessing Network Vulnerability , 2010, 2010 Proceedings IEEE INFOCOM.

[112]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[113]  H. Stanley,et al.  Networks formed from interdependent networks , 2011, Nature Physics.

[114]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[115]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[116]  Javier Montero,et al.  A multi-criteria optimization model for humanitarian aid distribution , 2011, J. Glob. Optim..

[117]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[118]  Mario Ventresca,et al.  A randomized algorithm with local search for containment of pandemic disease spread , 2014, Comput. Oper. Res..

[119]  Jonathan Cole Smith,et al.  Exact interdiction models and algorithms for disconnecting networks via node deletions , 2012, Discret. Optim..

[120]  Clayton W. Commander,et al.  Identifying Critical Nodes in Protein-Protein Interaction Networks , 2009 .

[121]  Frédéric Roupin,et al.  Minimal multicut and maximal integer multiflow: A survey , 2005, Eur. J. Oper. Res..

[122]  Egon Balas,et al.  The vertex separator problem: algorithms and computations , 2005, Math. Program..

[123]  Roberto Aringhieri,et al.  Hybrid constructive heuristics for the critical node problem , 2016, Annals of Operations Research.

[124]  Mihalis Yannakakis,et al.  Node-Deletion Problems on Bipartite Graphs , 1981, SIAM J. Comput..

[125]  Jonathan Cole Smith,et al.  Polynomial‐time algorithms for solving a class of critical node problems on trees and series‐parallel graphs , 2012, Networks.

[126]  Mihalis Yannakakis,et al.  Primal-dual approximation algorithms for integral flow and multicut in trees , 1997, Algorithmica.

[127]  Alex Pothen,et al.  Graph Partitioning Algorithms with Applications to Scientific Computing , 1997 .

[128]  Lenka Zdeborová,et al.  Inferring the origin of an epidemy with dynamic message-passing algorithm , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[129]  Hyeong-Ah Choi,et al.  Graph Bipartization and via Minimization , 1989, SIAM J. Discret. Math..

[130]  Roberto Aringhieri,et al.  VNS solutions for the Critical Node Problem , 2015, Electron. Notes Discret. Math..

[131]  S. Havlin,et al.  Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. , 2010, Physical review letters.

[132]  Francisco J. Rodríguez,et al.  Optimizing network attacks by artificial bee colony , 2017, Inf. Sci..

[133]  Mario Ventresca,et al.  A derandomized approximation algorithm for the critical node detection problem , 2014, Comput. Oper. Res..

[134]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[135]  M. R. Rao,et al.  On the multiway cut polyhedron , 1991, Networks.

[136]  H. Bodlaender Classes of graphs with bounded tree-width , 1986 .

[137]  Zhou Tao,et al.  Epidemic dynamics on complex networks , 2006 .

[138]  Beatrice M. Ombuki-Berman,et al.  An Experimental Evaluation of Multi-objective Evolutionary Algorithms for Detecting Critical Nodes in Complex Networks , 2015, EvoApplications.

[139]  James Aspnes,et al.  Inoculation strategies for victims of viruses and the sum-of-squares partition problem , 2005, SODA '05.

[140]  Dorit S. Hochbaum,et al.  A Polynomial Algorithm for the k-cut Problem for Fixed k , 1994, Math. Oper. Res..

[141]  Pim van 't Hof,et al.  On the Computational Complexity of Vertex Integrity and Component Order Connectivity , 2014, ISAAC.

[142]  Marie-Jean Meurs,et al.  An exact algorithm for solving the vertex separator problem , 2011, J. Glob. Optim..

[143]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[144]  Andreas Krause,et al.  Efficient Sensor Placement Optimization for Securing Large Water Distribution Networks , 2008 .

[145]  Jeroen H. G. C. Rutten,et al.  Disconnecting graphs by removing vertices: a polyhedral approach , 2007 .

[146]  Junichiro Fukuyama,et al.  NP-completeness of the Planar Separator Problems , 2006, J. Graph Algorithms Appl..

[147]  Charis Papadopoulos Restricted vertex multicut on permutation graphs , 2012, Discret. Appl. Math..

[148]  Alessandro Vespignani,et al.  Immunization of complex networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[149]  J R Jungck,et al.  Computer-assisted sequencing, interval graphs, and molecular evolution. , 1982, Bio Systems.

[150]  Alan T. Murray,et al.  Comparative Approaches for Assessing Network Vulnerability , 2008 .

[151]  Sunil Chopra,et al.  Extended formulations for the A-cut problem , 1996, Math. Program..

[152]  Xin He An Improved Algorithm for the Planar 3-Cut Problem , 1991, J. Algorithms.

[153]  Marco Di Summa,et al.  Identifying critical nodes in undirected graphs: Complexity results and polynomial algorithms for the case of bounded treewidth , 2013, Discret. Appl. Math..

[154]  Samir Khuller,et al.  The complexity of finding most vital arcs and nodes , 1995 .

[155]  My T. Thai,et al.  Network Under Joint Node and Link Attacks: Vulnerability Assessment Methods and Analysis , 2015, IEEE/ACM Transactions on Networking.