Estimating the Leaf Area Index of Agricultural Crops us- ing multi-temporal dual-polarimetric TerraSAR-X Data: A case study in North-Eastern Germany

[1]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[2]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[3]  C. Willmott Some Comments on the Evaluation of Model Performance , 1982 .

[4]  Fawwaz T. Ulaby,et al.  Relating the microwave backscattering coefficient to leaf area index , 1984 .

[5]  John A. Richards,et al.  Radar backscatter modelling of forests: a review of current trends , 1990 .

[6]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[7]  S. T. Gower,et al.  Rapid Estimation of Leaf Area Index in Conifer and Broad-Leaf Plantations , 1991 .

[8]  G. Guyot,et al.  Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer , 1993 .

[9]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[10]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[11]  Yoshio Inoue,et al.  Ku- and C-band SAR for discriminating agricultural crop and soil conditions , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  Jean-Pierre Wigneron,et al.  A simple approach to monitor crop biomass from C-band radar data , 1999 .

[13]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[14]  Julian D. Olden,et al.  Torturing data for the sake of generality: How valid are our regression models? , 2000 .

[15]  Seiho Uratsuka,et al.  Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables , 2002 .

[16]  R. J. Brown,et al.  Providing crop information using RADARSAT-1 and satellite optical imagery , 2002 .

[17]  R. Harris,et al.  Extracting biophysical parameters from remotely sensed radar data: a review of the water cloud model , 2003 .

[18]  Ray Harris,et al.  Constructing a water-use model for input to the water cloud backscatter model , 2003 .

[19]  Shusen Wang,et al.  Remote sensing of grassland–shrubland vegetation water content in the shortwave domain , 2006 .

[20]  D. Singh,et al.  Scatterometer performance with polarization discrimination ratio approach to retrieve crop soybean parameter at X‐band , 2006 .

[21]  Laura Dente,et al.  Integration of MERIS and ASAR Data for LAI Estimation of Wheat Fields , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[22]  Hans-Georg Engler,et al.  DEMMIN – a test site for the validation of Remote Sensing data products. General description and application during AgriSAR 2006. , 2007 .

[23]  Juan M. Lopez-Sanchez,et al.  Potentials of polarimetric SAR interferometry for agriculture monitoring , 2009 .

[24]  Hui Lin,et al.  The relationship between the leaf area index (LAI) of rice and the C‐band SAR vertical/horizontal (VV/HH) polarization ratio , 2009 .

[25]  Jakob J. van Zyl,et al.  A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Hui Lin,et al.  Monitoring Sugarcane Growth Using ENVISAT ASAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Heather McNairn,et al.  The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index , 2011 .

[28]  Niko E. C. Verhoest,et al.  On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters , 2011, IEEE Geoscience and Remote Sensing Letters.

[29]  Matthew O. Jones,et al.  Satellite passive microwave remote sensing for monitoring global land surface phenology , 2011 .

[30]  Thomas J. Jackson,et al.  Monitoring soybean growth using L-, C-, and X-band scatterometer data , 2013 .

[31]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[32]  Heather McNairn,et al.  Evaluating the Cloude–Pottier and Freeman–Durden scattering decompositions for distinguishing between unharvested and post-harvest agricultural fields , 2013 .

[33]  Simonetta Paloscia,et al.  Sensitivity analysis of X-band SAR to wheat and barley leaf area index in the Merguellil Basin , 2013 .

[34]  Irena Hajnsek,et al.  Soil Moisture Estimation Using Dual-Polarimetric Coherent (HH/VV) TerraSAR-X and TanDEM-X Data , 2013 .

[35]  Irena Hajnsek,et al.  Polarimetric Soil Moisture Retrieval at Short Wavelength , 2013 .

[36]  Jiali Shang,et al.  Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in Northeastern Ontario, Canada , 2014, Remote. Sens..

[37]  Cuizhen Wang,et al.  Capability of C-band backscattering coefficients from high-resolution satellite SAR sensors to assess biophysical variables in paddy rice , 2014 .

[38]  Xiaojing Bai,et al.  A Synergistic Methodology for Soil Moisture Estimation in an Alpine Prairie Using Radar and Optical Satellite Data , 2014, Remote. Sens..

[39]  Jiali Shang,et al.  Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data , 2014, Remote. Sens..

[40]  Cuizhen Wang,et al.  Potential of X-Band Images from High-Resolution Satellite SAR Sensors to Assess Growth and Yield in Paddy Rice , 2014, Remote. Sens..

[41]  Amine Merzouki,et al.  Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data , 2015 .

[42]  Heather McNairn,et al.  International Journal of Applied Earth Observation and Geoinformation , 2014 .

[43]  Manoj K. Arora,et al.  Study of water cloud model vegetation descriptors in estimating soil moisture in Solani catchment , 2015 .

[44]  José A. M. Demattê,et al.  A New Concept of Soil Line Retrieval from Landsat 8 Images for Estimating Plant Biophysical Parameters , 2016, Remote. Sens..

[45]  Jean-Pierre Wigneron,et al.  Comprehensive study of the biophysical parameters of agricultural crops based on assessing Landsat 8 OLI and Landsat 7 ETM+ vegetation indices , 2016 .

[46]  German Remote Sensing Data Center , .