Universal behavior of membranes with sterols.

Lanosterol is the biosynthetic precursor of cholesterol and ergosterol, sterols that predominate in the membranes of mammals and lower eukaryotes, respectively. These three sterols are structurally quite similar, yet their relative effects on membranes have been shown to differ. Here we study the effects of cholesterol, lanosterol, and ergosterol on 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipid bilayers at room temperature. Micropipette aspiration is used to determine membrane material properties (area compressibility modulus), and information about lipid chain order (first moments) is obtained from deuterium nuclear magnetic resonance. We compare these results, along with data for membrane-bending rigidity, to explore the relationship between membrane hydrophobic thickness and elastic properties. Together, such diverse approaches demonstrate that membrane properties are affected to different degrees by these structurally distinct sterols, yet nonetheless exhibit universal behavior.

[1]  R. Merkel,et al.  The effect of cholesterol, lanosterol, and ergosterol on lecithin bilayer mechanical properties at molecular and microscopic dimensions: A solid-state NMR and micropipet study , 2002 .

[2]  Erich Sackmann,et al.  Bending elastic moduli of lipid bilayers : modulation by solutes , 1990 .

[3]  J. Brochon,et al.  Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid. , 1995, Biophysical journal.

[4]  C. Trandum,et al.  The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study. , 2005, Biophysical journal.

[5]  W. Powderly,et al.  Amphotericin B: current understanding of mechanisms of action , 1990, Antimicrobial Agents and Chemotherapy.

[6]  E. Oldfield,et al.  Deuterium nuclear magnetic resonance investigation of dimyristoyllecithin--dipalmitoyllecithin and dimyristoyllecithin--cholesterol mixtures. , 1979, Biochemistry.

[7]  J. Backer,et al.  Transmembrane movement of cholesterol in small unilamellar vesicles detected by cholesterol oxidase. , 1981, The Journal of biological chemistry.

[8]  Horia I. Petrache,et al.  Alteration of lipid membrane rigidity by cholesterol and its metabolic precursors , 2005 .

[9]  J. Henriksen,et al.  Measurement of membrane elasticity by micro-pipette aspiration , 2004, The European physical journal. E, Soft matter.

[10]  A. Smondyrev,et al.  Molecular dynamics simulation of the structure of dimyristoylphosphatidylcholine bilayers with cholesterol, ergosterol, and lanosterol. , 2001, Biophysical journal.

[11]  Kai Simons,et al.  Model systems, lipid rafts, and cell membranes. , 2004, Annual review of biophysics and biomolecular structure.

[12]  M. Bloom,et al.  Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order. The effects of cholesterol. , 1990, Biophysical journal.

[13]  M. Bloom,et al.  Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains , 1976 .

[14]  E. Evans,et al.  Effect of chain length and unsaturation on elasticity of lipid bilayers. , 2000, Biophysical journal.

[15]  P. Yeagle Lanosterol and cholesterol have different effects on phospholipid acyl chain ordering. , 1985, Biochimica et biophysica acta.

[16]  E. Lindahl,et al.  Molecular dynamics simulations of phospholipid bilayers with cholesterol. , 2003, Biophysical journal.

[17]  G. Karlström,et al.  Phase equilibria in the phosphatidylcholine-cholesterol system. , 1987, Biochimica et biophysica acta.

[18]  W. Gelbart,et al.  Chain Packing and the Compressional Elasticity of Surfactant Films , 1987 .

[19]  D Needham,et al.  Elastic deformation and failure of lipid bilayer membranes containing cholesterol. , 1990, Biophysical journal.

[20]  Richard Semer,et al.  A spin label study of the effects of sterols on egg lecithin bilayers , 1979 .

[21]  M. Bloom,et al.  Lipid polymorphism and hydrocarbon order. , 1990, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[22]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[23]  N. Boccara,et al.  Physics of Amphiphilic Layers , 1987 .

[24]  C. Trandum,et al.  A thermodynamic study of the effects of cholesterol on the interaction between liposomes and ethanol. , 2000, Biophysical journal.

[25]  J. Seelig,et al.  Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. , 1975, Biochemistry.

[26]  M. Morrow,et al.  Universal behavior of lipid acyl chain order: chain length scaling , 1991 .

[27]  A. Herrmann,et al.  Desmosterol may replace cholesterol in lipid membranes. , 2005, Biophysical journal.

[28]  B. Frisken,et al.  The pressure-dependence of the size of extruded vesicles. , 2003, Biophysical journal.

[29]  James H. Davis,et al.  Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. , 1990, Biochemistry.

[30]  R. Demel,et al.  The effect of sterol structure on the permeability of lipomes to glucose, glycerol and Rb + . , 1972, Biochimica et biophysica acta.

[31]  K. Bloch,et al.  Sterol structure and membrane function. , 1981, Current topics in cellular regulation.

[32]  K. Bloch ON THE EVOLUTION OF A BIOSYNTHETIC PATHWAY , 1976 .

[33]  Yechezkel Barenholz,et al.  Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. , 2004, Sub-cellular biochemistry.

[34]  M. Fukugita,et al.  Atomic effects on the estimation ofve mass from the β-spectrum in tritium decay , 1981 .

[35]  M. Bloom,et al.  Sterol evolution and the physics of membranes , 2000 .

[36]  I. Bivas,et al.  Temperature and Chain Length Effects on Bending Elasticity of Phosphatidylcholine Bilayers , 1994 .

[37]  W. Nes Role of sterols in membranes , 1974, Lipids.

[38]  Megha,et al.  Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. , 2004, Biochemistry.

[39]  H. Amenitsch,et al.  Structural, dynamic and mechanical properties of POPC at low cholesterol concentration studied in pressure/temperature space , 2003, European Biophysics Journal.

[40]  J. Helms,et al.  Lipids as Targeting Signals: Lipid Rafts and Intracellular Trafficking , 2004, Traffic.

[41]  Michael F. Brown,et al.  Lanosterol and cholesterol-induced variations in bilayer elasticity probed by 2H NMR relaxation. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[42]  X. Xu,et al.  The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. , 2000, Biochemistry.

[43]  M. Angelova,et al.  Preparation of giant vesicles by external AC electric fields. Kinetics and applications , 1992 .

[44]  D. Mitov,et al.  Bending elasticities of model membranes: influences of temperature and sterol content. , 1997, Biophysical journal.

[45]  Amitabha Chattopadhyay,et al.  Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach. , 2004, Biochemical and biophysical research communications.

[46]  Ponisseril Somasundaran,et al.  ENCYCLOPEDIA OF Surface and Colloid Science , 2006 .

[47]  E. Evans,et al.  Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. , 1988, Biochemistry.

[48]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[49]  Michael F. Brown,et al.  Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. , 2002, Biochemistry.

[50]  M. Bloom,et al.  Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective , 1991, Quarterly Reviews of Biophysics.

[51]  H. L. Scott Lipid-cholesterol interactions. Monte Carlo simulations and theory. , 1991, Biophysical journal.

[52]  A. Herrmann,et al.  The Potential of Fluorescent and Spin-labeled Steroid Analogs to Mimic Natural Cholesterol* , 2003, Journal of Biological Chemistry.

[53]  J. Henriksen,et al.  Thermal undulations of quasi-spherical vesicles stabilized by gravity , 2002, The European physical journal. E, Soft matter.

[54]  S. Lowen The Biophysical Journal , 1960, Nature.

[55]  M. Bloom,et al.  2H-NMR and DSC study of SEPC-cholesterol mixtures , 1993 .

[56]  T. E. Thompson,et al.  Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. , 1992, Biochemistry.

[57]  J. Bolard How do the polyene macrolide antibiotics affect the cellular membrane properties? , 1986, Biochimica et biophysica acta.

[58]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .

[59]  L. Finegold Cholesterol in Membrane Models , 1992 .

[60]  M. Bloom,et al.  Combined influence of cholesterol and synthetic amphiphillic peptides upon bilayer thickness in model membranes. , 1992, Biophysical journal.

[61]  D. Ghosh,et al.  Monolayer interactions of individual lecithins with natural sterols. , 1972, Biochimica et biophysica acta.

[62]  C. Vilchèze,et al.  Effect of the Structure of Natural Sterols and Sphingolipids on the Formation of Ordered Sphingolipid/Sterol Domains (Rafts) , 2001, The Journal of Biological Chemistry.

[63]  M. Bloom,et al.  From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. , 2002, Biophysical journal.

[64]  E. Oldfield,et al.  Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy. , 1995, Biochimica et biophysica acta.

[65]  M. Bloom,et al.  Phosphatidylcholine: cholesterol phase diagrams. , 1992, Biophysical journal.

[66]  A. Rowat,et al.  Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity , 2004, European Biophysics Journal.