A Separator Theorem for String Graphs and its Applications

A string graph is the intersection graph of a collection of continuous arcs in the plane. We show that any string graph with m edges can be separated into two parts of roughly equal size by the removal of $O(m^{3/4}\sqrt{\log m})$ vertices. This result is then used to deduce that every string graph with n vertices and no complete bipartite subgraph Kt,t has at most ctn edges, where ct is a constant depending only on t. Another application shows that locally tree-like string graphs are globally tree-like: for any ε > 0, there is an integer g(ε) such that every string graph with n vertices and girth at least g(ε) has at most (1 + ε)n edges. Furthermore, the number of such labelled graphs is at most (1 + ε)nT(n), where T(n) = nn−2 is the number of labelled trees on n vertices.

[1]  A. Leaf GRAPH THEORY AND PROBABILITY , 1957 .

[2]  Frank Harary,et al.  Graph Theory , 2016 .

[3]  D. Rose,et al.  Generalized nested dissection , 1977 .

[4]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[5]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[6]  Carsten Thomassen Girth in graphs , 1983, J. Comb. Theory, Ser. B.

[7]  John R Gilbert,et al.  A Separator Theorem for Graphs of Bounded Genus , 1984, J. Algorithms.

[8]  L. Beineke,et al.  Selected Topics in Graph Theory 2 , 1985 .

[9]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[10]  Jan Kratochvíl,et al.  NP-hardness results for intersection graphs , 1989 .

[11]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[12]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  Vasilis Capoyleas,et al.  A turán-type theorem on chords of a convex polygon , 1992, J. Comb. Theory, Ser. B.

[15]  Farhad Shahrokhi,et al.  Applications of the crossing number , 1994, SCG '94.

[16]  J. Kratochvil,et al.  Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.

[17]  D. Colgrove,et al.  The Crossing Number , 1995 .

[18]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[19]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[20]  Alexandr V. Kostochka,et al.  Coloring Relatives of Intervals on the Plane, I: Chromatic Number Versus Girth , 1998, Eur. J. Comb..

[21]  Alexandr V. Kostochka,et al.  Colouring Relatives of Intervals on the Plane, II , 1998 .

[22]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[23]  János Pach,et al.  Which Crossing Number Is It Anyway? , 1998, J. Comb. Theory, Ser. B.

[24]  André I. Khuri,et al.  Infinite Sequences and Series , 2003 .

[25]  Daniela Kühn,et al.  Induced Subdivisions In Ks,s-Free Graphs of Large Average Degree , 2004, Comb..

[26]  Jirí Matousek,et al.  Crossing number, pair-crossing number, and expansion , 2004, J. Comb. Theory, Ser. B.

[27]  Noga Alon,et al.  The Probabilistic Method, Second Edition , 2004 .

[28]  Farhad Shahrokhi,et al.  Applications of the crossing number , 2005, Algorithmica.

[29]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[30]  Micha Sharir,et al.  Topological Graphs with No Large Grids , 2005, Graphs Comb..

[31]  Paul Wollan,et al.  Proper minor-closed families are small , 2006, J. Comb. Theory B.

[32]  Jacob Fox A Bipartite Analogue of Dilworth’s Theorem , 2006, Order.

[33]  Jeong Hyun Kang,et al.  Combinatorial Geometry , 2006 .

[34]  János Pach,et al.  Comment on Fox news , 2006 .

[35]  S Koilraj,et al.  Labelings of graphs , 2008 .

[36]  János Pach,et al.  Coloring kk-free intersection graphs of geometric objects in the plane , 2008, SCG '08.

[37]  Micha Sharir,et al.  On planar intersection graphs with forbidden subgraphs , 2008, J. Graph Theory.

[38]  J. Pach,et al.  Separator theorems and Turán-type results for planar intersection graphs , 2008 .

[39]  Julia Böttcher,et al.  Bandwidth, treewidth, separators, expansion, and universality , 2008, Electron. Notes Discret. Math..

[40]  János Pach,et al.  A bipartite analogue of Dilworth's theorem for multiple partial orders , 2009, Eur. J. Comb..

[41]  Csaba D. Tóth,et al.  Turán-type results for partial orders and intersection graphs of convex sets , 2010 .

[42]  Zdenek Dvorak,et al.  Small graph classes and bounded expansion , 2010, J. Comb. Theory, Ser. B.

[43]  Csaba D. Tóth,et al.  Intersection patterns of curves , 2011, J. Lond. Math. Soc..