Periodic-Orbit Theory

[[ RM: A review paper on cycle expansions. I quote the introduction: in section (2) ]] I will summarize Gutzwiller's theory for the spectrum of eigenenergies and extend it to diagonal matrix elements as well. The derivation of the associated zeta function is given (2.2) and the identification of suitable scaling variables discussed (2.3). In section 3 tools necessary for the organization of chaos will be discussed: symbolic dynamics (3.1), the connectivity matrix (3.3), the topological zeta function (3.4) and general transfer matrices and zeta functions (3.5). Although illustrated for the case of hard collisions in a billiard, the symbolic dynamics can be extended to `smooth collisions' in smooth potentials (3.2). In systems with discrete symmetries, zeta functions factorize into zeta functions on invariant subspaces. This symmetry factorization and the associated reduction in symbolics is discussed in section 4. The ideas developed here are illustrated for the example of a free particle reflected elastically off three disks in section 5. Methods to find periodic orbits (5.1), the convergence of the trace formula (5.2), the semiclassical computation of scattering resonances (5.3), the convergence of the cycle expansion (5.4) and methods to obtain eigenvalues of the bounded billiard (5.5) are discussed. The relevant parts of a classical periodic orbit theory are developed in section 6.1, including a discussion of escape rates and the Hannay-Ozorio de Almeida sum rule (6.2). Finally, the issue of semiclassical matrix elements is taken up again and applications to experiments are discussed.

[1]  M. Baranger,et al.  The calculation of periodic trajectories , 1988 .

[2]  J. Hannay,et al.  Periodic orbits and a correlation function for the semiclassical density of states , 1984 .

[3]  G. Tanner,et al.  Quantization of chaotic systems. , 1992, Chaos.

[4]  Per Dahlqvist Semiclassical mechanics of bound chaotic potentials. , 1992, Chaos.

[5]  S. Smale Differentiable dynamical systems , 1967 .

[6]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[7]  A. Voros,et al.  Spectral functions, special functions and the Selberg zeta function , 1987 .

[8]  Michael V Berry,et al.  Semiclassical approximations in wave mechanics , 1972 .

[9]  Erik Aurell,et al.  Recycling of strange sets: II. Applications , 1990 .

[10]  Cvitanovic,et al.  Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.

[11]  M. Berry,et al.  Calculating the bound spectrum by path summation in action-angle variables , 1977 .

[12]  G. Hardy The Theory of Numbers , 1922, Nature.

[13]  P. Cvitanović,et al.  Periodic orbit expansions for classical smooth flows , 1991 .

[14]  Erik Aurell,et al.  Recycling of strange sets: I. Cycle expansions , 1990 .

[15]  G. Russberg,et al.  Periodic orbit quantization of bound chaotic systems , 1991 .

[16]  N. Balazs,et al.  Chaos on the pseudosphere , 1986 .

[17]  Wintgen,et al.  Connection between long-range correlations in quantum spectra and classical periodic orbits. , 1987, Physical review letters.

[18]  M. Gutzwiller The quantization of a classically ergodic system , 1982 .

[19]  L. Kadanoff,et al.  Escape from strange repellers. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Steiner,et al.  Quantization of chaos. , 1991, Physical review letters.

[21]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[22]  E. Bogomolny Smoothed wave functions of chaotic quantum systems , 1988 .

[23]  H. P. McKean,et al.  Selberg's trace formula as applied to a compact riemann surface , 1972 .

[24]  J. Delos Catastrophes and stable caustics in bound states of Hamiltonian systems , 1987 .

[25]  Christiansen,et al.  Determination of correlation spectra in chaotic systems. , 1990, Physical review letters.

[26]  B. Eckhardt Fractal properties of scattering singularities , 1987 .

[27]  B. M. Fulk MATH , 1992 .

[28]  E. Bogomolny Semiclassical quantization of multidimensional systems , 1992 .

[29]  M. Gutzwiller Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .

[30]  D. Ruelle,et al.  Resonances of chaotic dynamical systems. , 1986, Physical review letters.

[31]  M. Baranger,et al.  Periodic trajectories for a two-dimensional nonintegrable Hamiltonian , 1987 .

[32]  J. Keating The semiclassical functional equation. , 1992, Chaos.

[33]  W. Miller Semiclassical quantization of nonseparable systems: A new look at periodic orbit theory , 1975 .

[34]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[35]  M. Sieber,et al.  Classical and quantum mechanics of a strongly chaotic billiard , 1990 .

[36]  B. Eckhardt,et al.  Indices in classical mechanics , 1991 .

[37]  D A Greenwood,et al.  The Boltzmann Equation in the Theory of Electrical Conduction in Metals , 1958 .

[38]  Joseph Ford,et al.  How random is a coin toss , 1983 .

[39]  A. Voros Unstable periodic orbits and semiclassical quantisation , 1988 .

[40]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[41]  B. Eckhardt,et al.  Symbolic description of periodic orbits for the quadratic Zeeman effect , 1990 .

[42]  R. Balian,et al.  Asymptotic evaluation of the Green's function for large quantum numbers , 1971 .

[43]  Lauritzen Discrete symmetries and the periodic-orbit expansions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[44]  M. Wilkinson Random matrix theory in semiclassical quantum mechanics of chaotic systems , 1988 .

[45]  R. Balian,et al.  Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations , 1972 .

[46]  M. Berry,et al.  Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[47]  R. Kubo a General Expression for the Conductivity Tensor , 1956 .

[48]  S. Rice,et al.  Scattering from a classically chaotic repellor , 1989 .

[49]  A. Voros,et al.  Semiclassical approximations for nuclear hamiltonians. I. Spin-independent potentials , 1979 .

[50]  E. Aurell,et al.  Convergence of the Semi-Classical Periodic Orbit Expansion , 1989 .

[51]  S. Rice,et al.  Semiclassical quantization of the scattering from a classically chaotic repellor , 1989 .

[52]  J. Main,et al.  Quasi-Landau spectrum of the chaotic diamagnetic hydrogen atom. , 1988, Physical review letters.

[53]  M. Berry,et al.  Closed orbits and the regular bound spectrum , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[54]  Wintgen,et al.  Semiclassical matrix elements from periodic orbits. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[55]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[56]  J. Keating,et al.  A rule for quantizing chaos , 1990 .

[57]  The spectrum of the period-doubling operator in terms of cycles , 1990 .

[58]  J. Pique Molecular dynamics and quantum chaos in small polyatomic molecules (CS_2, C_2H_2) through stimulated-emission pumping experiments and statistical Fourier-transform analysis , 1990 .

[59]  D. Mayer On the location of poles of Ruelle's zeta function , 1987 .

[60]  M. Ikawa On poles of scattering matrices for several convex bodies , 1990 .

[61]  Scherer,et al.  Quantum eigenvalues from classical periodic orbits. , 1991, Physical review letters.

[62]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[63]  M. Hamermesh Group theory and its application to physical problems , 1962 .

[64]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[65]  Robbins Discrete symmetries in periodic-orbit theory. , 1989, Physical review. A, General physics.

[66]  K. Richter,et al.  The semiclassical helium atom. , 1992, Chaos.

[67]  M. Sieber,et al.  Quantum chaos in the hyperbola billiard , 1990 .

[68]  R. Balian,et al.  Solution of the Schrodinger Equation in Terms of Classical Paths , 1974 .

[69]  J. Stein,et al.  "Quantum" chaos in billiards studied by microwave absorption. , 1990, Physical review letters.

[70]  M. Wilkinson A semiclassical sum rule for matrix elements of classically chaotic systems , 1987 .

[71]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[72]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[73]  G. Iooss,et al.  Chaotic behaviour of deterministic systems , 1983 .

[74]  Harold M. Edwards,et al.  Riemann's Zeta Function , 1974 .