Periodic-Orbit Theory
暂无分享,去创建一个
[1] M. Baranger,et al. The calculation of periodic trajectories , 1988 .
[2] J. Hannay,et al. Periodic orbits and a correlation function for the semiclassical density of states , 1984 .
[3] G. Tanner,et al. Quantization of chaotic systems. , 1992, Chaos.
[4] Per Dahlqvist. Semiclassical mechanics of bound chaotic potentials. , 1992, Chaos.
[5] S. Smale. Differentiable dynamical systems , 1967 .
[6] Jorge V. José,et al. Chaos in classical and quantum mechanics , 1990 .
[7] A. Voros,et al. Spectral functions, special functions and the Selberg zeta function , 1987 .
[8] Michael V Berry,et al. Semiclassical approximations in wave mechanics , 1972 .
[9] Erik Aurell,et al. Recycling of strange sets: II. Applications , 1990 .
[10] Cvitanovic,et al. Periodic-orbit quantization of chaotic systems. , 1989, Physical review letters.
[11] M. Berry,et al. Calculating the bound spectrum by path summation in action-angle variables , 1977 .
[12] G. Hardy. The Theory of Numbers , 1922, Nature.
[13] P. Cvitanović,et al. Periodic orbit expansions for classical smooth flows , 1991 .
[14] Erik Aurell,et al. Recycling of strange sets: I. Cycle expansions , 1990 .
[15] G. Russberg,et al. Periodic orbit quantization of bound chaotic systems , 1991 .
[16] N. Balazs,et al. Chaos on the pseudosphere , 1986 .
[17] Wintgen,et al. Connection between long-range correlations in quantum spectra and classical periodic orbits. , 1987, Physical review letters.
[18] M. Gutzwiller. The quantization of a classically ergodic system , 1982 .
[19] L. Kadanoff,et al. Escape from strange repellers. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[20] Steiner,et al. Quantization of chaos. , 1991, Physical review letters.
[21] Cvitanovic,et al. Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.
[22] E. Bogomolny. Smoothed wave functions of chaotic quantum systems , 1988 .
[23] H. P. McKean,et al. Selberg's trace formula as applied to a compact riemann surface , 1972 .
[24] J. Delos. Catastrophes and stable caustics in bound states of Hamiltonian systems , 1987 .
[25] Christiansen,et al. Determination of correlation spectra in chaotic systems. , 1990, Physical review letters.
[26] B. Eckhardt. Fractal properties of scattering singularities , 1987 .
[27] B. M. Fulk. MATH , 1992 .
[28] E. Bogomolny. Semiclassical quantization of multidimensional systems , 1992 .
[29] M. Gutzwiller. Phase-Integral Approximation in Momentum Space and the Bound States of an Atom , 1967 .
[30] D. Ruelle,et al. Resonances of chaotic dynamical systems. , 1986, Physical review letters.
[31] M. Baranger,et al. Periodic trajectories for a two-dimensional nonintegrable Hamiltonian , 1987 .
[32] J. Keating. The semiclassical functional equation. , 1992, Chaos.
[33] W. Miller. Semiclassical quantization of nonseparable systems: A new look at periodic orbit theory , 1975 .
[34] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[35] M. Sieber,et al. Classical and quantum mechanics of a strongly chaotic billiard , 1990 .
[36] B. Eckhardt,et al. Indices in classical mechanics , 1991 .
[37] D A Greenwood,et al. The Boltzmann Equation in the Theory of Electrical Conduction in Metals , 1958 .
[38] Joseph Ford,et al. How random is a coin toss , 1983 .
[39] A. Voros. Unstable periodic orbits and semiclassical quantisation , 1988 .
[40] D. R. Heath-Brown,et al. The Theory of the Riemann Zeta-Function , 1987 .
[41] B. Eckhardt,et al. Symbolic description of periodic orbits for the quadratic Zeeman effect , 1990 .
[42] R. Balian,et al. Asymptotic evaluation of the Green's function for large quantum numbers , 1971 .
[43] Lauritzen. Discrete symmetries and the periodic-orbit expansions. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[44] M. Wilkinson. Random matrix theory in semiclassical quantum mechanics of chaotic systems , 1988 .
[45] R. Balian,et al. Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations , 1972 .
[46] M. Berry,et al. Level clustering in the regular spectrum , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[47] R. Kubo. a General Expression for the Conductivity Tensor , 1956 .
[48] S. Rice,et al. Scattering from a classically chaotic repellor , 1989 .
[49] A. Voros,et al. Semiclassical approximations for nuclear hamiltonians. I. Spin-independent potentials , 1979 .
[50] E. Aurell,et al. Convergence of the Semi-Classical Periodic Orbit Expansion , 1989 .
[51] S. Rice,et al. Semiclassical quantization of the scattering from a classically chaotic repellor , 1989 .
[52] J. Main,et al. Quasi-Landau spectrum of the chaotic diamagnetic hydrogen atom. , 1988, Physical review letters.
[53] M. Berry,et al. Closed orbits and the regular bound spectrum , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[54] Wintgen,et al. Semiclassical matrix elements from periodic orbits. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[55] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[56] J. Keating,et al. A rule for quantizing chaos , 1990 .
[57] The spectrum of the period-doubling operator in terms of cycles , 1990 .
[58] J. Pique. Molecular dynamics and quantum chaos in small polyatomic molecules (CS_2, C_2H_2) through stimulated-emission pumping experiments and statistical Fourier-transform analysis , 1990 .
[59] D. Mayer. On the location of poles of Ruelle's zeta function , 1987 .
[60] M. Ikawa. On poles of scattering matrices for several convex bodies , 1990 .
[61] Scherer,et al. Quantum eigenvalues from classical periodic orbits. , 1991, Physical review letters.
[62] P. Billingsley,et al. Ergodic theory and information , 1966 .
[63] M. Hamermesh. Group theory and its application to physical problems , 1962 .
[64] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .
[65] Robbins. Discrete symmetries in periodic-orbit theory. , 1989, Physical review. A, General physics.
[66] K. Richter,et al. The semiclassical helium atom. , 1992, Chaos.
[67] M. Sieber,et al. Quantum chaos in the hyperbola billiard , 1990 .
[68] R. Balian,et al. Solution of the Schrodinger Equation in Terms of Classical Paths , 1974 .
[69] J. Stein,et al. "Quantum" chaos in billiards studied by microwave absorption. , 1990, Physical review letters.
[70] M. Wilkinson. A semiclassical sum rule for matrix elements of classically chaotic systems , 1987 .
[71] Y. Sinai. GIBBS MEASURES IN ERGODIC THEORY , 1972 .
[72] S. V. Fomin,et al. Ergodic Theory , 1982 .
[73] G. Iooss,et al. Chaotic behaviour of deterministic systems , 1983 .
[74] Harold M. Edwards,et al. Riemann's Zeta Function , 1974 .