Interactive dynamic buckling of orthotropic thin-walled channels subjected to in-plane pulse loading

Abstract The present paper deals with a dynamic response of thin-walled columns subjected to in-plane pulse loading when the shear lag phenomenon and the distortional deformations are taken into account. The structures are assumed to be simply supported at the ends. In order to obtain the equations of motion of individual plates, the nonlinear theory of orthotropic thin-walled plates has been modified in such a way that it additionally accounts for all components of inertial forces. The differential equations of motion have been obtained from Hamilton’s principle. The disturbance theory has been applied in order to obtain an approximate analytical solution to the equations. The problem of nonlinear stability has been solved with the transition matrix method. The problem has been investigated on the basis of the asymptotic analytical–numerical method and the finite element method. The calculations have been carried out for a channel.

[1]  Tomasz Kubiak,et al.  Postbuckling behaviour of thin-walled girders with orthotropy varying widthwise , 2001 .

[2]  D Petry,et al.  Dynamic buckling of thin isotropic plates subjected to in-plane impact , 2000 .

[3]  Srinivasan Sridharan,et al.  An improved interactive buckling analysis of thin-walled columns having doubly symmetric sections , 1986 .

[4]  Zbigniew Kolakowski,et al.  Interactive buckling of thin-walled closed elastic beam-columns with intermediate stiffeners , 1995 .

[5]  Srinivasan Sridharan,et al.  Columns: Static and Dynamic Interactive Buckling , 1984 .

[6]  Bernard Budiansky,et al.  Theory of buckling and post-buckling behavior of elastic structures , 1974 .

[7]  Zbigniew Kolakowski,et al.  Natural frequencies of a thin-walled structures with central intermediate stiffeners or/and variable thickness , 2003 .

[8]  Kolakowski Zbigniew,et al.  Influence of modification of boundary conditions on load carrying capacity in thin-walled columns in the second order approximation , 1993 .

[9]  Srinivasan Sridharan,et al.  Mode Interaction in Thin-Walled Structural Members∗ , 1984 .

[10]  John W. Hutchinson,et al.  Dynamic buckling of imperfection-sensitive structures , 1966 .

[11]  H. Hao,et al.  Dynamic Buckling and Collapse of Rectangular Plates under Intermediate Velocity Impact , 2001 .

[12]  W. T. Koiter,et al.  An Alternative Approach to the Interaction between Local and Overall Buckling in Stiffened Panels , 1976 .

[13]  Miroslav Škaloud The effect of shear lag in the light of various definitions of the ultimate limit state of stiffened compression flanges , 1985 .

[14]  Srinivasan Sridharan,et al.  Interactive Buckling in Thin‐Walled Beam‐Columns , 1985 .

[15]  Andrea J Schokker,et al.  Dynamic buckling of composite shells , 1996 .

[16]  B Unger ELASTISCHES KIPPEN VON BELIEBIG GELAGERTEN UND AUFGEHAENGTEN DURCHLAUFTRAEGERN MIT EINFACH-SYMMETRISCHEM, IN TRAEGERACHS E VERAENDERLICHEM QUERSCHNITT UNTER VERWENDUNG EINER ABWANDL UNG DES REDUKTIONSVERFAHRENS ALS LOESUNGSMETHODE , 1970 .

[17]  P. Goltermann,et al.  Interactive buckling in thin-walled beams—I. Theory , 1989 .

[18]  Zbigniew Kolakowski Interactive buckling of thin-walled beam-columns with open and closed cross-sections , 1993 .

[19]  Angelo Luongo,et al.  Asymmetric interactive buckling of thin-walled columns with initial imperfections , 1987 .

[20]  Z. Kołakowski Some thoughtd on mode interaction in thin-walled columns under uniform compression , 1989 .

[21]  Victor Birman,et al.  Small Vibrations of an Imperfect Panel in the Vicinity of a Non-Linear Static State , 1987 .

[22]  Esben Byskov,et al.  Mode interaction in axially stiffened cylindrical shells , 1977 .

[23]  Zbigniew Kolakowski,et al.  Interactive buckling of thin-walled beam-columns with intermediate stiffeners or/and variable thickness , 2000 .

[24]  Victor Birman,et al.  Influence of initial imperfections on nonlinear free vibration of elastic bars , 1985 .

[25]  Robert D. Cook Behavior of cylindrical tanks whose axes are horizontal , 1985 .

[26]  Esben Byskov,et al.  Elastic buckling with infinitely many local modes , 1987 .

[27]  Srinivasan Sridharan,et al.  Performance of axially compressed stiffened panels , 1989 .

[28]  Judah Ari-Gur,et al.  Dynamic pulse buckling of rectangular composite plates , 1997 .

[29]  Srinivasan Sridharan,et al.  A versatile model for interactive buckling of columns and beam-columns , 1988 .

[30]  John W. Hutchinson,et al.  Dynamic buckling estimates. , 1966 .

[31]  V. J. Papazoglou,et al.  Large deflection dynamic response of composite laminated plates under in-plane loads , 1995 .

[32]  W. T. Koiter,et al.  ELASTIC STABILITY AND POST-BUCKLING BEHAVIOUR , 2001 .

[33]  Angelo Luongo,et al.  On the effect of the local overall interaction on the postbuckling of uniformly compressed channels , 1985 .