Multispectral discrimination of spectrally similar hydrothermal minerals in mafic crust: A 5000 km2 ASTER alteration map of the Oman–UAE ophiolite

[1]  B. Ehlmann,et al.  Hydrothermal Alteration of the Ocean Crust and Patterns in Mineralization With Depth as Measured by Micro‐Imaging Infrared Spectroscopy , 2021, Journal of geophysical research. Solid earth.

[2]  P. Alt‐Epping,et al.  Reaction Mechanism and Water/Rock Ratios Involved in Epidosite Alteration of the Oceanic Crust , 2021, Journal of Geophysical Research: Solid Earth.

[3]  Yulia Novikova,et al.  Satellite ASTER Mineral Mapping the Provenance of the Loess Used by the Ming to Build their Earthen Great Wall , 2020, Remote. Sens..

[4]  L. Diamond,et al.  Subduction-zone contributions to axial volcanism in the Oman–U.A.E. ophiolite , 2019, Lithosphere.

[5]  Sankaran Rajendran,et al.  ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman , 2019, Ore Geology Reviews.

[6]  L. Diamond,et al.  A revised map of volcanic units in the Oman ophiolite: insights into the architecture of an oceanic proto-arc volcanic sequence , 2019, Solid Earth.

[7]  D. Garbe‐Schönberg,et al.  Hydrothermal fault zones in the lower oceanic crust: An example from Wadi Gideah, Samail ophiolite, Oman , 2018, Lithos.

[8]  Michael J. Harrower,et al.  Hyperspectral satellite imagery detection of ancient raw material sources: Soft‐stone vessel production at Aqir al‐Shamoos (Oman) , 2018, Archaeological Prospection.

[9]  Sankaran Rajendran,et al.  Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits , 2017 .

[10]  B. Pejcic,et al.  Vibrational spectroscopy of epidote, pumpellyite and prehnite applied to low-grade regional metabasites , 2017, Geochemistry: Exploration, Environment, Analysis.

[11]  L. Diamond,et al.  Sub-seafloor epidosite alteration: Timing, depth and stratigraphic distribution in the Semail ophiolite, Oman , 2016 .

[12]  Thomas Cudahy,et al.  Short-Wavelength Infrared (SWIR) spectroscopy of low-grade metamorphic volcanic rocks of the Pilbara Craton , 2016 .

[13]  L. Diamond,et al.  Volcanostratigraphic Controls on the Occurrence of Massive Sulfide Deposits in the Semail Ophiolite, Oman , 2014 .

[14]  Yassine Charabi,et al.  Projection of Future Changes in Rainfall and Temperature Patterns in Oman , 2013 .

[15]  C. MacLeod,et al.  “Moist MORB” axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin , 2013 .

[16]  D. Jupp,et al.  A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain , 2012 .

[17]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[18]  Harald van der Werff,et al.  Thermal Infrared Spectrometer for Earth Science Remote Sensing Applications—Instrument Modifications and Measurement Procedures , 2011, Sensors.

[19]  Lawrence C. Rowan,et al.  Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .

[20]  R. Thomas,et al.  Architecture of the Oman–UAE ophiolite: evidence for a multi-phase magmatic history , 2010 .

[21]  A. Tamura,et al.  Geochemical characteristics of chloritization of mafic crust from the northern Oman ophiolite: Implications for estimating the chemical budget of hydrothermal alteration of the oceanic lithosphere , 2009 .

[22]  Patrick Pinet,et al.  Geological mapping strategy using visible near‐infrared–shortwave infrared hyperspectral remote sensing: Application to the Oman ophiolite (Sumail Massif) , 2009 .

[23]  H. Matsueda,et al.  Hydrothermal Alteration of Oman Ophiolite Extrusives in Ghuzayn Area , 2006 .

[24]  L. A. Coogan,et al.  Chemical and thermal constraints on focussed fluid flow in the lower oceanic crust , 2006, American Journal of Science.

[25]  L. Rowan,et al.  Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms , 2006 .

[26]  T. Cudahy,et al.  Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia , 2005 .

[27]  J. B. Dalton,et al.  Identification of spectrally similar materials using the USGS Tetracorder algorithm: the calcite–epidote–chlorite problem , 2004 .

[28]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[29]  Yong Du,et al.  Radiometric normalization, compositing, and quality control for satellite high resolution image mosaics over large areas , 2001, IEEE Trans. Geosci. Remote. Sens..

[30]  F. Boudier,et al.  Accretion of Oman and United Arab Emirates ophiolite – Discussion of a new structural map , 2000 .

[31]  E. Milton,et al.  The use of the empirical line method to calibrate remotely sensed data to reflectance , 1999 .

[32]  D. Stakes,et al.  The Northern Samail Ophiolite: An Oxygen isotope, microprobe, and field study , 1992 .

[33]  P. Nehlig,et al.  Deep crustal seawater penetration and circulation at ocean ridges: Evidence from the Oman ophiolite , 1988 .

[34]  D. Rothery,et al.  Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images , 1988 .

[35]  J. Pearce,et al.  The interrelationship between magmatic and ore-forming hydrothermal processes in the Oman ophiolite , 1985 .

[36]  D. Rothery,et al.  The role of Landsat Multispectral Scanner (MSS) imagery in mapping the Oman ophiolite , 1984, Geological Society, London, Special Publications.