The effects of Er3+ ion concentration on 2.0-μm emission performance in Ho3+/Tm3+ co-doped Na5Y9F32 single crystal under 800-nm excitation

[1]  Hongwei Song,et al.  Ho3+ doped Na5Y9F32 single crystals doubly sensitized by Er3+ and Yb3+ for efficient 2.0 μm emission , 2020 .

[2]  Hongwei Song,et al.  Enhanced mid-infrared emissions of Ho3+/Er3+ co-doped Na5Y9F32 single crystal by introduction of Pr3+ ions , 2020 .

[3]  Hongwei Song,et al.  Photoluminescence properties of Tm3+/Tb3+/Sm3+ tri-doped Na5Y9F32 single crystal with high thermal stability for white light-emitting diodes , 2020 .

[4]  C. Tu,et al.  Tm3+:CaLaGa3O7 crystal laser: A new diode-pumped continuous-wave broadband light source operating in eye-safe spectral range , 2019, Journal of Luminescence.

[5]  Xiantao Wei,et al.  Energy transfer behaviors and tunable luminescence in Tb3+/Eu3+ codoped oxyfluoride glass ceramics containing cubic/hexagonal NaYF4 nanocrystals , 2019, Journal of Luminescence.

[6]  C. Tu,et al.  Investigations on the spectroscopic properties and laser performance of Tm3+/Ho3+-SrLaGa3O7 crystal , 2019, Optics & Laser Technology.

[7]  Baojiu Chen,et al.  Efficient near-infrared downconversion and energy transfer mechanism in Pr3+/Yb3+ co-doped Na5Y9F32 single crystals , 2019, Journal of Luminescence.

[8]  Y. Hang,et al.  2 μm emission of PbF2 single crystal co-doped with Ho3+/Yb3+ ions , 2017 .

[9]  Junjie Zhang,et al.  Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 μm laser material , 2016 .

[10]  Ying Tian,et al.  2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses , 2015 .

[11]  Junjie Zhang,et al.  Highly efficient mid-infrared 2 μm emission in Ho 3+ /Yb 3+ -codoped germanate glass , 2015 .

[12]  Baojiu Chen,et al.  2.0-μm emission and energy transfer of Ho3+/Yb3+ co-doped LiYF4 single crystal excited by 980 nm , 2015 .

[13]  Q. Qian,et al.  Enhanced 2.0 μm Emission and Lowered Upconversion Emission in Fluorogermanate Glass‐Ceramic Containing LaF3:Ho3+/Yb3+ by Codoping Ce3+ Ions , 2013 .

[14]  Linmei Yang,et al.  Spectral properties of Ho3+/Tm3+ co-doped β′-Gd2(MoO4)3 crystal as laser gain medium around 2.0 μm , 2013 .

[15]  Yan Wang,et al.  Benefit of Pr3+ ions to the spectral properties of Pr3+/Er3+:CaGdAlO4 crystal for a 2.7 μm laser. , 2012, Optics letters.

[16]  Lili Hu,et al.  Intense 2.7 μm and broadband 2.0 μm emission from diode-pumped Er3+/Tm3+/Ho(3+)-doped fluorophosphate glass. , 2011, Optics letters.

[17]  Chun Li,et al.  Spectral properties of Tm,Ho:LiYF4 laser crystal , 2011 .

[18]  Stuart D. Jackson,et al.  The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared , 2009 .

[19]  Meng Wang,et al.  2μm emission performance in Ho3+ doped fluorophosphate glasses sensitized with Er3+ and Tm3+ under 800 nm excitation , 2009 .

[20]  D. Qin,et al.  Judd--Oflet analysis of spectrum and laser performance of Ho:YAP crystal end-pumped by 1.91-μm Tm:YLF laser , 2009 .

[21]  G. Erbert,et al.  Directly diode-pumped holmium fiber lasers. , 2007, Optics letters.

[22]  L. Nunes,et al.  Spectroscopic characterization of Ho3+ ion-doped fluoride glass , 2006 .

[23]  熊锐,et al.  ELECTRONIC STRUCTURE OF BISMUTH MOLYBDENUM OXIDE SINGLE CRYSTAL Bi 0.19 MoO 3 , 2005 .

[24]  M. Tonelli,et al.  Fluoride crystals: m Ho3+ laser emission and energy transfer mechanisms in Er3+ , 2001 .

[25]  Setsuhisa Tanabe,et al.  Spectroscopic properties of erbium-doped ultraphosphate glasses for 1.5 μm amplification , 2001 .

[26]  B. Viana,et al.  Optimization by energy transfer of the 2.7 μm emission in the Er:SrLaGa3O7 melilite crystal , 1997 .

[27]  Hisayoshi Toratani,et al.  Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+Ho3+ doubly-doped glasses , 1996 .

[28]  Tetsuro Izumitani,et al.  Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+ -Ho3+ doped near-infrared laser glasses, sensitized by Yb3+ , 1995 .

[29]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .