Quantum nonlocal effects in individual and interacting graphene nanoribbons

We show that highly doped graphene ribbons can support surface plasmons at near-infrared frequencies when their width is in the nanometer range, leading to important nonlocal and finite quantum-size corrections, such as sizable blueshifts. The magnitude of these effects is assessed by comparing classical and quantum-mechanical models to describe graphene plasmons. More precisely, we examine individual and interacting 6–8 nm wide zigzag and armchair ribbons doped to 0.4–1.5 eV Fermi energies. We find a strong influence of nonlocal effects on the orientation of graphene edges, with plasmons in zigzag ribbons undergoing strong quenching when their energy is below the Fermi level. Nonlocality is also affecting the hybridization between ribbon plasmons in dimers and arrays for separations below a few nanometers. Remarkably, the removal of a single row of atomic bonds in a ribbon produces a strong plasmon frequency shift, whereas the removal of bonds along an array of rows separated by several nanometers in an extended sheet causes a dramatic increase in the absorption. Besides the fundamental interest of these results, our work supports the use of narrow ribbons to achieve electro-optical modulation in the near infrared.

[1]  M. Soljavci'c,et al.  Plasmonics in graphene at infrared frequencies , 2009, 0910.2549.

[2]  P. Ajayan,et al.  Gated tunability and hybridization of localized plasmons in nanostructured graphene. , 2013, ACS nano.

[3]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[4]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[5]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[6]  Sergey Mikhailov,et al.  Electromagnetic response of electrons in graphene: Non-linear effects , 2008 .

[7]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[8]  S. Thongrattanasiri,et al.  Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. , 2012, ACS nano.

[9]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[10]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[11]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[12]  Steven G. Louie,et al.  Controlling inelastic light scattering quantum pathways in graphene , 2011, Nature.

[13]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[14]  F. J. Garcia-Vidal,et al.  Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons , 2011, 1201.0191.

[15]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[16]  N. Engheta,et al.  Thin absorbing screens using metamaterial surfaces , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[17]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[18]  C. N. Lau,et al.  Infrared nanoscopy of dirac plasmons at the graphene-SiO₂ interface. , 2011, Nano letters (Print).

[19]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[20]  Wojciech Pisula,et al.  Graphenes as potential material for electronics. , 2007, Chemical reviews.

[21]  P. McEuen,et al.  Confined plasmons in graphene microstructures: Experiments and theory , 2013, 1302.5972.

[22]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[23]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[24]  L. Brey,et al.  Elementary electronic excitations in graphene nanoribbons , 2007 .

[25]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[26]  S. Thongrattanasiri,et al.  Quantum finite-size effects in graphene plasmons. , 2012, ACS nano.

[27]  P. Wallace The Band Theory of Graphite , 1947 .

[28]  Min Seok Jang,et al.  Highly confined tunable mid-infrared plasmonics in graphene nanoresonators. , 2013, Nano letters.

[29]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[30]  R. Fante,et al.  Reflection properties of the Salisbury screen , 1988 .

[31]  L. Novotný,et al.  Nonlinear excitation of surface plasmon polaritons by four-wave mixing. , 2008, Physical review letters.

[32]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[33]  S. A. Mikhailov,et al.  Theory of the giant plasmon-enhanced second-harmonic generation in graphene and semiconductor two-dimensional electron systems , 2011, 1102.5216.

[34]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[35]  F. Koppens,et al.  Graphene plasmonics: a platform for strong light-matter interactions. , 2011, Nano letters.

[36]  Xing Zhu,et al.  Active tunable absorption enhancement with graphene nanodisk arrays. , 2014, Nano letters.

[37]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[38]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[39]  Mathieu Kociak,et al.  Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. , 2009, Journal of the American Chemical Society.

[40]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[41]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[42]  F. J. Garcia-Vidal,et al.  Edge and waveguide terahertz surface plasmon modes in graphene microribbons , 2011, 1107.5787.

[43]  L.brey,et al.  Elementary Electronic Excitations in Graphene Nanoribbons , 2007, cond-mat/0701787.

[44]  S. De Gendt,et al.  Self-assembled air-stable supramolecular porous networks on graphene. , 2013, ACS nano.

[45]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[46]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[47]  J Moger,et al.  Coherent nonlinear optical response of graphene. , 2010, Physical review letters.

[48]  Y. Kivshar,et al.  Nonlinear plasmonic slot waveguides. , 2008, Optics express.

[49]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[50]  S. A. Mikhailov,et al.  Non-linear electromagnetic response of graphene , 2007, 0704.1909.

[51]  D. Pines,et al.  The theory of quantum liquids , 1968 .

[52]  S. Thongrattanasiri,et al.  Plasmons driven by single electrons in graphene nanoislands , 2013, 1303.2088.

[53]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006 .

[54]  F. Guinea,et al.  Damping pathways of mid-infrared plasmons in graphene nanostructures , 2013, Nature Photonics.