Sulfate reduction in coastal ecosystems

[1]  B. Jørgensen,et al.  Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short-term 35SO42− reduction measurements , 1984 .

[2]  Richard L. Smith,et al.  Evidence for Sulfate-Reducing and Methane-Producing Microorganisms in Sediments from Sites 618, 619, and 622 , 1986 .

[3]  A. Lerman Sedimentary Balance Through Geological Time , 1982 .

[4]  R. Howarth,et al.  Sulfate reduction in the salt marshes at Sapelo Island, Georgia1 , 1983 .

[5]  K. O. Emery,et al.  The distribution and isotopic abundance of sulphur in recent marine sediments off southern California , 1963 .

[6]  Robert A. Berner,et al.  Bioturbation and the early diagenesis of carbon and sulfur , 1985 .

[7]  B. Jørgensen,et al.  Seasonal variation in H2S emission to the atmosphere from intertidal sediments in denmark , 1982 .

[8]  J. Postgate The reduction of sulphur compounds by Desulphovibrio desulphuricans. , 1951, Journal of general microbiology.

[9]  I. Dor,et al.  Photosynthetic Microorganisms of the Gavish Sabkha , 1985 .

[10]  D. Christensen Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments1 , 1984 .

[11]  B. Jørgensen A theoretical model of the stable sulfur isotope distribution in marine sediments , 1979 .

[12]  D. Kinsman Modes of Formation, Sedimentary Associations, and Diagnostic Features of Shallow-Water and Supratidal Evaporites , 1968 .

[13]  W. Eifion Jones,et al.  The Estuarine Ecosystem. , 1981 .

[14]  R. Howarth,et al.  Sulfate reduction in a New England salt marsh1 , 1979 .

[15]  D. Hammond,et al.  Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis , 1979 .

[16]  V. Gallardo,et al.  Large benthic microbial communities in sulphide biota under Peru–Chile Subsurface Countercurrent , 1977, Nature.

[17]  W. Lyons,et al.  Sulfate reduction and the nature of organic matter in estuarine sediments , 1979 .

[18]  I. Kaplan,et al.  Diagenetic sulfate reduction in marine sediments , 1980 .

[19]  B. Jørgensen,et al.  Solar Lake (Sinai). 5. The sulfur cycle of the bcnthic cyanobacterial mats1 , 1977 .

[20]  I. Joint Microbial production of an estuarine mudflat , 1978 .

[21]  A. C. Campbell,et al.  Geochemistry of Interstitial Waters and Sediments, Leg 64, Gulf of California , 1982 .

[22]  I. Koike,et al.  Denitrification and Ammonia Formation in Anaerobic Coastal Sediments , 1978, Applied and environmental microbiology.

[23]  Y. Saijo,et al.  Studies on biological metabolism in a meromictic Lake Suigetsu , 1971 .

[24]  Geoffrey D. Smith,et al.  Acetylene reduction and hydrogen metabolism by a cyanobacterial/sulfate‐reducing bacterial mat ecosystem , 1988 .

[25]  R. Christian,et al.  Anaerobic Respiration and Fermentation , 1981 .

[26]  S. V. Smith,et al.  C:N:P ratios of benthic marine plants1 , 1983 .

[27]  L. Chambers,et al.  Biological Sulphate Reduction In Carbonate Sediments of a Coral Reef , 1976 .

[28]  J. Ferguson,et al.  Interactions between saline redbed groundwaters and peritidal carbonates, Spencer Gulf, South Australia: significance for models of stratiform copper ore genesis , 1981 .

[29]  F. Widdel,et al.  The Dissimilatory Sulfate-Reducing Bacteria , 1981 .

[30]  L. A. Chambers,et al.  Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. , 1975, Canadian journal of microbiology.

[31]  J. Leventhal An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition , 1983 .

[32]  M. L. Jensen,et al.  The kinetic isotope effect in the bacterial reduction and oxidation of sulfur , 1964 .

[33]  P. A. Rickard,et al.  A thermodynamic assessment of possible substrates for sulphate-reducing bacteria. , 1977, Australian journal of biological sciences.

[34]  W. Lyons,et al.  Biogeochemistry of Nearshore Bermuda Sediments. I. Sulfate Reduction Rates and Nutrient Generation , 1982 .

[35]  M. Ivanov Microbiological processes in the formation of sulfur deposits : (Rolʹ mikrobiologicheskikh protsessov v genezise mestorozhdenii samorodnoi sery) , 1968 .

[36]  S. Rittenberg,et al.  CARBON ISOTOPE FRACTIONATION DURING METABOLISM OF LACTATE BY DESULFOVIBRIO DESULFURICANS. , 1964, Journal of general microbiology.

[37]  R. Berner Sulfate reduction and the rate of deposition of marine sediments , 1978 .

[38]  W. Reeburgh,et al.  Inhibition Experiments on Anaerobic Methane Oxidation , 1985, Applied and environmental microbiology.

[39]  R. Wieder,et al.  An evaluation of wet chemical methods for quantifying sulfur fractions in freshwater wetland peat1 , 1985 .

[40]  G. Skyring,et al.  Iron in cyanobacterial mats , 1980 .

[41]  Richard L. Smith,et al.  Big Soda Lake (Nevada). 2. Pelagic sulfate reduction , 1987 .

[42]  H. Krouse,et al.  Chapter 6.2 Reductive Reactions in the Sulfur Cycle , 1979 .

[43]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[44]  H. Ghobary Interstitial water chemistry of the inner continental shelf sediments off the gironde estuary , 1983 .

[45]  W. Wiebe,et al.  Tracer Analysis of Methanogenesis in Salt Marsh Soils , 1980, Applied and environmental microbiology.

[46]  R. Hodson,et al.  Radioisotope assay for the quantification of sulfate-reducing bacteria in sediment and water. , 1975, Applied microbiology.

[47]  L. A. Chambers,et al.  Metal accumulation by bacteria with particular reference to dissimilatory sulphate-reducing bacteria , 1976 .

[48]  R. Herbert Heterotrophic nitrogen fixation in shallow estuarine sediments , 1975 .

[49]  S. V. Smith,et al.  Mass balance of carbon and phosphorus in Shark Bay, Western Australia1 , 1983 .

[50]  M. Hines,et al.  Distribution of Methanogenic and Sulfate-Reducing Bacteria in Near-Shore Marine Sediments , 1982, Applied and environmental microbiology.

[51]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[52]  L. A. Chambers Sulfur isotope study of a modern intertidal environment, and the interpretation of ancient sulfides , 1982 .

[53]  D. Goodchild,et al.  The taxonomy of some new isolates of dissimilatory sulfate-reducing bacteria. , 1977, Canadian journal of microbiology.

[54]  D. White,et al.  Microbial biomass and productivity in seagrass beds. , 1985, Geomicrobiology journal.

[55]  H. Krouse,et al.  Chapter 6.4 Biogeochemical Cycling of Sulfur , 1979 .

[56]  R. Howarth,et al.  Pyrite and oxidized iron mineral phases formed from pyrite oxidation in salt marsh and estuarine sediments , 1982 .

[57]  W. Wiebe,et al.  Sulfate reduction rates in Georgia marshland soils , 1979 .

[58]  Bo Barker Jørgensen,et al.  Anaerobic methane oxidation rates at the sulfate‐methane transition in marine sediments from Kattegat and Skagerrak (Denmark) , 1985 .

[59]  M. Hines,et al.  Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire , 1985 .

[60]  J. Gieskes Interstitial Water Studies, Leg 15, Alkalinity, pH, Mg, Ca, Si, PO4, and NH4 , 1973 .

[61]  T. Walker,et al.  Observations on nitrate, phosphate and silicate in Cleveland Bay, northern Queensland , 1981 .

[62]  D. B. Nedwell,et al.  Bacterial sulphate reduction in relation to sulphur geochemistry in two contrasting areas of saltmarsh sediment , 1978 .

[63]  M. Krom,et al.  Nature and reactions of dissolved organic matter in the interstitial waters of marine sediments , 1977 .

[64]  C. Martens,et al.  Volatile fatty acid cycling in organic-rich marine sediments , 1982 .

[65]  Robert Raiswell,et al.  Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory , 1983 .

[66]  Jørgensen Bb Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. , 1982 .

[67]  James J. Anderson,et al.  A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet , 1984 .

[68]  R. Berner,et al.  Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments; report of the FOAM Group , 1977 .

[69]  P. W. Wilson,et al.  Nitrogen fixation by sulphate-reducing bacteria. , 1970, Journal of general microbiology.

[70]  D. Rickard,et al.  The origin of framboids , 1970 .

[71]  B. Jørgensen,et al.  Seasonal dynamics of elemental sulfur in two coastal sediments , 1982 .

[72]  F. Mackenzie,et al.  Time variability of pore water chemistry in recent carbonate sediments, Devil's Hole, Harrington Sound, Bermuda , 1974 .

[73]  D. B. Nedwell,et al.  Inhibition of sulphate reduction in anoxic marine sediment by Group VI anions , 1984 .

[74]  G. King,et al.  Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments1 , 1984 .

[75]  C. Hopkinson,et al.  Above‐ and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia1 , 1984 .

[76]  B. Spiro Bacterial sulphate reduction and calcite precipitation in hypersaline deposition of bituminous shales , 1977, Nature.

[77]  D. Dyrssen,et al.  Anoxic sediment reactions — A comparison between box experiments and a fjord investigation , 1979 .

[78]  J. Postgate Iron and the synthesis of cytochrome c3. , 1956, Journal of general microbiology.

[79]  R. Thauer,et al.  Dissimilatory Sulfate Reduction, Energetic Aspects , 1981 .

[80]  J. Postgate Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. , 1969, Journal of general microbiology.

[81]  T. Church,et al.  The geochemistry of salt marshes: Sedimentary ion diffusion, sulfate reduction, and pyritization , 1983 .

[82]  J. Ferguson,et al.  Sedimentological and Geobiological Studies of Intertidal Cyanobacterial Mats in North-Eastern Spencer Gulf, South Australia , 1980 .

[83]  R. Berner,et al.  The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested1 , 1984 .

[84]  C. Hall,et al.  Carbon in estuaries. , 1973, Brookhaven symposia in biology.

[85]  A. Devol,et al.  Are high rates of sulphate reduction associated with anaerobic oxidation of methane? , 1981, Nature.

[86]  D. Kinsman,et al.  Chapter 8.4 Algal Belt and Coastal Sabkha Evolution, Trucial Coast, Persian Gulf , 1976 .

[87]  P. S. Meadows,et al.  An introduction to marine science , 1978 .

[88]  R. Hallberg Computer simulation of sulfur isotope fractionation in a closed sulfuretum , 1985 .

[89]  B. B. J�rgensen,et al.  Volatile Fatty Acids and Hydrogen as Substrates for Sulfate-Reducing Bacteria in Anaerobic Marine Sediment , 1981, Applied and environmental microbiology.

[90]  P. Trudinger Geological significance of sulphur oxidoreduction by bacteria , 1982 .

[91]  J. Bauld,et al.  Sulfate reduction in sediments colonized by cyanobacteria, Spencer Gulf, South Australia , 1983 .

[92]  Robert A. Berner,et al.  An idealized model of dissolved sulfate distribution in recent sediments , 1964 .

[93]  P. Trudinger,et al.  Chapter 11.2 Biological Processes and Mineral Deposition , 1976 .

[94]  J. Bauld,et al.  Primary Productivity, Sulfate Reduction and Sulfer Isotope Fractionation in Algal Mats and Sediments of Hamelin pool, Shark Bay, W. A. , 1979 .

[95]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[96]  S. Einarsson,et al.  The sources of alkalinity in Lake Miklavatn, north Iceland , 1983 .

[97]  R. Berner Sedimentary pyrite formation , 1970 .

[98]  A. Stams,et al.  Utilization of amino acids as energy substrates by two marine Desulfovibrio strains , 1985 .

[99]  M. Bender,et al.  Fate of organic carbon reaching the deep sea floor: a status report☆ , 1984 .

[100]  L. Gardner Chemical models for sulfate reduction in closed anaerobic marine environments , 1973 .

[101]  D. Mountfort,et al.  Role of Sulfate Reduction Versus Methanogenesis in Terminal Carbon Flow in Polluted Intertidal Sediment of Waimea Inlet, Nelson, New Zealand , 1981, Applied and environmental microbiology.

[102]  D. B. Nedwell,et al.  Microbial Metabolism of Acetate, Propionate and Butyrate in Anoxic Sediment from the Colne Point Saltmarsh, Essex, U.K. , 1982 .

[103]  J. Gieskes,et al.  CHAPTER 46 – The Chemistry of Interstitial Waters of Deep Sea Sediments: Interpretation of Deep Sea Drilling Data , 1983 .

[104]  D. Waples,et al.  Carbon and nitrogen diagenesis in deep sea sediments , 1980 .

[105]  W. Reeburgh Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments , 1980 .

[106]  J. Davis,et al.  Anaerobic oxidation of hydrocarbons by Desulfovibrio desulfuricans , 1966 .

[107]  M. P. Bryant,et al.  Growth of Desulfovibrio in Lactate or Ethanol Media Low in Sulfate in Association with H2-Utilizing Methanogenic Bacteria , 1977, Applied and environmental microbiology.

[108]  J. Postgate Nitrogen fixation by sporulating sulphate-reducing bacteria including rumen strains. , 1970, Journal of general microbiology.

[109]  R. Berner,et al.  Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases1 , 1977 .

[110]  O. J. Koblentz-Mishke Plankton primary production of the world ocean. , 1970 .

[111]  C. M. Brown,et al.  Organic degradation, sulphate reduction and ammonia production in the sediments of Loch Eil, Scotland , 1986 .

[112]  M. Krom,et al.  Sources, deposition rates and decomposition of organic carbon in recent sediment of Sachem Head Harbor, Long Island Sound , 1985 .

[113]  R. Aller,et al.  Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of long Island Sound, USA , 1980 .

[114]  A. Chalmers,et al.  The Cycles of Nitrogen and Phosphorus , 1981 .

[115]  R. Castenholz,et al.  Laminated microbial mats, laguna Guerrero Negro, Mexico , 1981 .

[116]  H. Veldkamp,et al.  Microbial interactions in sediment communities. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[117]  T. Blackburn,et al.  Turnover of tracer (14C, 3H labelled) alanine in inshore marine sediments , 1980 .

[118]  S. Rittenberg,et al.  MICROBIOLOGICAL FRACTIONATION OF SULPHUR ISOTOPES. , 1964, Journal of general microbiology.

[119]  Thomas D. Brock,et al.  Anaerobic Methane Oxidation: Occurrence and Ecology , 1980, Applied and environmental microbiology.

[120]  R. Berner,et al.  Interstitial water chemistry of anoxic Long Island Sound sediments. 2. Nutrient regeneration and phosphate removal 1 , 1978 .

[121]  C. Collins,et al.  Natural variations in the isotopic content of sulphur and their significance. , 1949, Canadian journal of research.

[122]  G. King Sulfate reduction in Georgia salt marsh soils: An evaluation of pyrite formation by use of 35S and 55Fe tracers1 , 1983 .

[123]  D. B. Nedwell,et al.  Heterotrophic nitrogen fixation in an intertidal saltmarsh sediment , 1980 .

[124]  R. Howarth,et al.  Early diagenesis of organic matter in sediments off the coast of Peru , 1985 .

[125]  L. G. Wilson,et al.  Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. , 1958, The Journal of biological chemistry.

[126]  B. F. Taylor,et al.  Sulfate reduction and methanogenesis in marine sediments , 1978 .

[127]  J. Sørensen Reduction of Ferric Iron in Anaerobic, Marine Sediment and Interaction with Reduction of Nitrate and Sulfate , 1982, Applied and environmental microbiology.

[128]  T. Blackburn,et al.  Seasonal Rates of Methane Oxidation in Anoxic Marine Sediments , 1981, Applied and environmental microbiology.

[129]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[130]  T. Blackburn,et al.  The Importance of Posidonia oceanica and Cymodocea nodosa as Contributors of Free Amino Acids in Water and Sediment of Seagrass Beds , 1981 .

[131]  D. B. Nedwell,et al.  Stimulation of Methanogenesis by Slurries of Saltmarsh Sediment after the Addition of Molybdate to Inhibit Sulphate-reducing Bacteria , 1983 .

[132]  Bernard P. Boudreau,et al.  The dependence of bacterial sulfate reduction on sulfate concentration in marine sediments , 1984 .

[133]  F. Widdel,et al.  Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients , 1985 .

[134]  R. Hallberg In Situ Experimentation with Anaerobic Sediments: Some Biogeochemical Applications , 1980 .

[135]  W. G. Garlick Sabkhas, slumping, and compaction at Mufulira, Zambia , 1981 .

[136]  W. Reeburgh Rates of biogeochemical processes in anoxic sediments. , 1983 .

[137]  L. A. Chambers,et al.  Microbiological fractionation of stable sulfur isotopes: A review and critique , 1979 .

[138]  Richard L. Smith,et al.  Electron Donors Utilized by Sulfate-Reducing Bacteria in Eutrophic Lake Sediments , 1981, Applied and environmental microbiology.

[139]  R. Howarth,et al.  Pyrite formation and the measurement of sulfate reduction in salt marsh sediments1 , 1984 .

[140]  D. B. Nedwell,et al.  Modelling the Processes of Organic Matter Degradation and Nutrients Recycling in Sedimentary Systems , 1982 .

[141]  D. Ross,et al.  Bathymetry and Continuous Seismic Profiles of the Hot Brine Region of the Red Sea , 1969 .

[142]  R. Oremland,et al.  Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments , 1982 .

[143]  J. Murray,et al.  Interstitial water chemistry in the sediments of Saanich Inlet , 1978 .

[144]  B. Jørgensen The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)1 , 1977 .

[145]  Land Floras: The Major Late Phanerozoic Atmospheric Carbon Dioxide/Oxygen Control , 1978, Science.

[146]  M. Barcelona Dissolved organic carbon and volatile fatty acids in marine sediment pore waters , 1980 .

[147]  M. Bender,et al.  The marine phosphorus cycle , 1982 .

[148]  B. B. Jørgensen,et al.  The sulfur cycle of a marine sediment model system , 1974 .

[149]  P. Kepkay,et al.  Effects of iron, sulfur, and microbial activity on aerobic to anaerobic transitions in marine sediments , 1981 .

[150]  David W. Smith,et al.  Enumeration and Relative Importance of Acetylene-Reducing (Nitrogen-Fixing) Bacteria in a Delaware Salt Marsh , 1980, Applied and environmental microbiology.

[151]  W. Orem,et al.  Microbial activity and bioturbation-induced oscillations in pore water chemistry of estuarine sediments in spring , 1982, Nature.

[152]  L. Land,et al.  Interstitial water chemistry of jamaican reef sediment sulfate reduction and submarine cementation , 1986 .

[153]  D. B. Nedwell,et al.  Sulfate Reduction and Methanogenesis in the Sediment of a Saltmarsh on the East Coast of the United Kingdom , 1982, Applied and environmental microbiology.

[154]  F. Sansone Depth distribution of short-chain organic acid turnover in Cape Lookout Bight sediments , 1986 .

[155]  D. Kosiur,et al.  Methane production and oxidation in Santa Barbara Basin sediments , 1979 .

[156]  W. Wiebe Anaerobic Benthic Microbial Processes: Changes from the Estuary to the Continental Shelf , 1979 .

[157]  G. King Utilization of hydrogen, acetate, and “noncompetitive”; substrates by methanogenic bacteria in marine sediments , 1984 .

[158]  D. M. Ward,et al.  Vertical distribution of sulfate reduction, methane production, and bacteria in marine sediments , 1981 .

[159]  JOAN I. Sperber Release of Phosphate from Soil Minerals by Hydrogen Sulphide , 1958, Nature.

[160]  I. Kaplan,et al.  Changes in dissolved sulfate, calcium and carbonate from interstitial water of near-shore sediments , 1968 .

[161]  M. Goldhaber,et al.  Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the gulf of California , 1980 .

[162]  D. L. Gibson Pyrite-organic matter relationships: Currant Bush Limestone, Georgina Basin, Australia , 1985 .

[163]  D. Hammond,et al.  Interstitial Water Studies, Leg 15, Study of CO2 Released from Stored Deep-Sea Sediments , 1973 .

[164]  D. B. Nedwell,et al.  Evidence for Coexistence of Two Distinct Functional Groups of Sulfate-Reducing Bacteria in Salt Marsh Sediment , 1981, Applied and environmental microbiology.

[165]  W. Wiebe,et al.  Regulation of sulfate concentrations and methanogenesis in salt marsh soils , 1980 .

[166]  W. Krumbein Chapter 2.2 Calcification by Bacteria and Algae , 1979 .

[167]  W. Reeburgh,et al.  METHANE CONSUMPTION IN CARIACO TRENCH WATERS AND SEDIMENTS , 1976 .

[168]  L. E. Bågander Bacterial cycling of sulfur in a Baltic sediment: An in situ study in closed systems , 1980 .

[169]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[170]  M. Meybeck Carbon, nitrogen, and phosphorus transport by world rivers , 1982 .

[171]  P. Crill,et al.  Spatial and temporal fluctuations of methane production in anoxic coastal marine sediments , 1983 .

[172]  T. Donnelly,et al.  Precambrian sulfur isotopes and a possible role for sulfite in the evolution of biological sulfate reduction , 1982 .

[173]  B. L. Howes,et al.  Short-term endproducts of sulfate reduction in a salt marsh: Formation of acid volatile sulfides, elemental sulfur, and pyrite☆ , 1985 .

[174]  J. Tiedje,et al.  Carbon and Electron Flow in Mud and Sandflat Intertidal Sediments at Delaware Inlet, Nelson, New Zealand , 1980, Applied and environmental microbiology.

[175]  A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments , 1978 .

[176]  W. B. Roberts,et al.  The chemistry of pyrite formation in aqueous solution and its relation to the depositional environment , 1969 .

[177]  F. Sayles,et al.  Interstitial water studies on small core samples, Leg 15 , 1973 .

[178]  A. Lerman,et al.  Organic matter reactivity and sedimentation rates in the ocean , 1977 .

[179]  D. Canfield,et al.  The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales , 1986 .

[180]  R. Oremland,et al.  Microbial Sulfate Reduction Measured by an Automated Electrical Impedance Technique , 1979 .