Expanding the Strain‐Promoted 1,3‐Dipolar Cycloaddition Arsenal for a More Selective Bioorthogonal Labeling in Living Cells

[1]  Franziska Rönicke,et al.  Fast and Efficient Postsynthetic DNA Labeling in Cells by Means of Strain‐Promoted Sydnone‐Alkyne Cycloadditions , 2021, Chemistry.

[2]  K. Moremen,et al.  Impacting Bacterial Sialidase Activity by Incorporating Bioorthogonal Chemical Reporters onto Mammalian Cell-Surface Sialosides. , 2021, ACS chemical biology.

[3]  Yoshiki Narimatsu,et al.  Global view of human protein glycosylation pathways and functions , 2020, Nature Reviews Molecular Cell Biology.

[4]  David F. Smith,et al.  Amplification and Preparation of Cellular O-glycome for Functional Glycomics. , 2020, Analytical chemistry.

[5]  W. Chai,et al.  Mucin O-glycan microarrays. , 2019, Current opinion in structural biology.

[6]  K. Moremen,et al.  Selective Engineering of Linkage-Specific α2,6-N-Linked Sialoproteins Using Sydnone-Modified Sialic Acid Bioorthogonal Reporters. , 2019, Angewandte Chemie.

[7]  F. Friscourt,et al.  Fluorogenic Sydnone-Modified Coumarins Switched-On by Copper-Free Click Chemistry. , 2018, Organic letters.

[8]  J. Badaut,et al.  Sydnone Reporters for Highly Fluorogenic Copper-Free Click Ligations. , 2018, The Journal of organic chemistry.

[9]  Matthew R. Pratt,et al.  Metabolic Chemical Reporters of Glycans Exhibit Cell‐Type‐Selective Metabolism and Glycoprotein Labeling , 2017, Chembiochem : a European journal of chemical biology.

[10]  Ajit Varki,et al.  Biological roles of glycans , 2016, Glycobiology.

[11]  W. Reutter,et al.  Metabolisches Glykoengineering mit N‐Acyl‐Seiten‐ ketten‐modifizierten Mannosaminen , 2016 .

[12]  W. Reutter,et al.  Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines. , 2016, Angewandte Chemie.

[13]  Xing Chen,et al.  Metabolic Remodeling of Cell‐Surface Sialic Acids: Principles, Applications, and Recent Advances , 2016, Chembiochem : a European journal of chemical biology.

[14]  Qing Lin,et al.  Photo-Triggered Click Chemistry for Biological Applications , 2016, Topics in Current Chemistry.

[15]  C. Fahrni,et al.  Fluorogenic Strain-Promoted Alkyne-Diazo Cycloadditions. , 2015, Chemistry.

[16]  T. Wyss-Coray,et al.  CalFluors: A Universal Motif for Fluorogenic Azide Probes across the Visible Spectrum. , 2015, Journal of the American Chemical Society.

[17]  R. Raines,et al.  Diazo Groups Endure Metabolism and Enable Chemoselectivity in Cellulo , 2015, Journal of the American Chemical Society.

[18]  C. Lim,et al.  An azido-BODIPY probe for glycosylation: initiation of strong fluorescence upon triazole formation. , 2014, Journal of the American Chemical Society.

[19]  C. Bertozzi,et al.  Synthesis and reactivity of dibenzoselenacycloheptynes. , 2013, Organic letters.

[20]  Dariusz Matosiuk,et al.  Click chemistry for drug development and diverse chemical-biology applications. , 2013, Chemical reviews.

[21]  C. Fahrni,et al.  A fluorogenic probe for the catalyst-free detection of azide-tagged molecules. , 2012, Journal of the American Chemical Society.

[22]  C. Bertozzi,et al.  Fluorogenic azidofluoresceins for biological imaging. , 2012, Journal of the American Chemical Society.

[23]  Jennifer J. Kohler,et al.  Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners , 2012, Proceedings of the National Academy of Sciences.

[24]  M. Wolfert,et al.  Polar dibenzocyclooctynes for selective labeling of extracellular glycoconjugates of living cells. , 2012, Journal of the American Chemical Society.

[25]  G. Pruijn,et al.  Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. , 2012, Bioconjugate chemistry.

[26]  C. Bertozzi,et al.  Thiacycloalkynes for Copper-Free Click Chemistry , 2012, Angewandte Chemie.

[27]  Mihály Kállay,et al.  A non-fluorinated monobenzocyclooctyne for rapid copper-free click reactions. , 2012, Chemistry.

[28]  B. Feringa,et al.  Strain-promoted copper-free "click" chemistry for 18F radiolabeling of bombesin. , 2011, Angewandte Chemie.

[29]  C. Bertozzi,et al.  Synthesis of a fluorogenic cyclooctyne activated by Cu-free click chemistry. , 2011, Organic letters.

[30]  C. Bertozzi,et al.  From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions , 2011, Accounts of chemical research.

[31]  V. Popik,et al.  Metal-free sequential [3 + 2]-dipolar cycloadditions using cyclooctynes and 1,3-dipoles of different reactivity. , 2011, Journal of the American Chemical Society.

[32]  Gerald W. Hart,et al.  Glycomics Hits the Big Time , 2010, Cell.

[33]  A. Kuzmin,et al.  Surface functionalization using catalyst-free azide-alkyne cycloaddition. , 2010, Bioconjugate chemistry.

[34]  P. Friedl,et al.  Readily Accessible Bicyclononynes for Bioorthogonal Labeling and Three-Dimensional Imaging of Living Cells , 2010, Angewandte Chemie.

[35]  C. Bertozzi,et al.  Cu-free click cycloaddition reactions in chemical biology. , 2010, Chemical Society reviews.

[36]  C. Bertozzi,et al.  Rapid Cu-Free Click Chemistry with Readily Synthesized Biarylazacyclooctynones , 2010, Journal of the American Chemical Society.

[37]  Jian Du,et al.  Metabolic glycoengineering: sialic acid and beyond. , 2009, Glycobiology.

[38]  G. Maas Neues zur Synthese von Diazoverbindungen , 2009 .

[39]  G. Maas New syntheses of diazo compounds. , 2009, Angewandte Chemie.

[40]  Andrei A. Poloukhtine,et al.  Selective labeling of living cells by a photo-triggered click reaction. , 2009, Journal of the American Chemical Society.

[41]  E. Sletten,et al.  Bioorthogonale Chemie – oder: in einem Meer aus Funktionalität nach Selektivität fischen , 2009 .

[42]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[43]  K. Houk,et al.  Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study. , 2009, Journal of the American Chemical Society.

[44]  M. Wolfert,et al.  Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. , 2008, Angewandte Chemie.

[45]  Carolyn R. Bertozzi,et al.  Copper-free click chemistry for dynamic in vivo imaging , 2007, Proceedings of the National Academy of Sciences.

[46]  Ajit Varki,et al.  Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins , 2007, Nature.

[47]  J. W. Sen,et al.  Stability of tyrosine sulfate in acidic solutions. , 2007, Analytical biochemistry.

[48]  Ronald T. Raines,et al.  Fluorogenic label for biomolecular imaging. , 2006, ACS chemical biology.

[49]  Q. Wang,et al.  A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. , 2004, Organic letters.

[50]  Jennifer A. Prescher,et al.  A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. , 2004, Journal of the American Chemical Society.

[51]  C. Fahrni,et al.  A Fluorogenic Probe for the Copper(I)-Catalyzed Azide−Alkyne Ligation Reaction: Modulation of the Fluorescence Emission via 3(n,π*)−1(π,π*) Inversion , 2004 .

[52]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[53]  C. Bertozzi,et al.  Cell surface engineering by a modified Staudinger reaction. , 2000, Science.

[54]  T Corfield,et al.  Bacterial sialidases--roles in pathogenicity and nutrition. , 1992, Glycobiology.

[55]  R. Schmidt,et al.  1,3‐Dipolar Additions of Sydnones to Alkynes. A New Route into the Pyrazole Series , 1962 .