Finite element methods based on two families of novel second-order numerical formulas for the fractional Cable model

We apply two families of novel fractional $\theta$-methods, the FBT-$\theta$ and FBN-$\theta$ methods developed by the authors in previous work, to the fractional Cable model, in which the time direction is approximated by the fractional $\theta$-methods, and the space direction is approximated by the finite element method. Some positivity properties of the coefficients for both of these methods are derived, which are crucial for the proof of the stability estimates. We analyse the stability of the scheme and derive an optimal convergence result with $O(\tau^2+h^{r+1})$, where $\tau$ is the time mesh size and $h$ is the spatial mesh size. Some numerical experiments with smooth and nonsmooth solutions are conducted to confirm our theoretical analysis.

[1]  Yang Liu,et al.  Some second-order 𝜃 schemes combined with finite element method for nonlinear fractional cable equation , 2018, Numerical Algorithms.

[2]  Changpin Li,et al.  A new second-order midpoint approximation formula for Riemann-Liouville derivative: algorithm and its application , 2017 .

[3]  Jose L. Gracia,et al.  Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation , 2017, SIAM J. Numer. Anal..

[4]  Bangti Jin,et al.  Correction of High-Order BDF Convolution Quadrature for Fractional Evolution Equations , 2017, SIAM J. Sci. Comput..

[5]  Zhi-Zhong Sun,et al.  Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence , 2015, J. Comput. Phys..

[6]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[7]  Mariam Al-Maskari,et al.  The lumped mass FEM for a time-fractional cable equation , 2018, Applied Numerical Mathematics.

[8]  Jan S. Hesthaven,et al.  Numerical Approximation of the Fractional Laplacian via hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$hp$$\end{doc , 2014, Journal of Scientific Computing.

[9]  G. Karniadakis,et al.  Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions☆ , 2017, 1701.00996.

[10]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[11]  Zhimin Zhang,et al.  Unconditionally Optimal Error Estimates of a Linearized Galerkin Method for Nonlinear Time Fractional Reaction–Subdiffusion Equations , 2018, Journal of Scientific Computing.

[12]  C. Lubich Discretized fractional calculus , 1986 .

[13]  Bruce Ian Henry,et al.  Fractional Cable Equation Models for Anomalous Electrodiffusion in Nerve Cells: Finite Domain Solutions , 2011, SIAM J. Appl. Math..

[14]  Hui Zhang,et al.  A time–space spectral tau method for the time fractional cable equation and its inverse problem , 2018, Applied Numerical Mathematics.

[15]  Yunqing Huang,et al.  Developing Finite Element Methods for Maxwell's Equations in a Cole-Cole Dispersive Medium , 2011, SIAM J. Sci. Comput..

[16]  Xiaoshen Wang,et al.  Nonsmooth data error estimates for FEM approximations of the time fractional cable equation , 2017 .

[17]  Yang Liu,et al.  High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation , 2017, Comput. Math. Appl..

[18]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[19]  Xiaoyun Jiang,et al.  Parameter estimation for the fractional Schrödinger equation using Bayesian method , 2016 .

[20]  Lehel Banjai,et al.  Efficient high order algorithms for fractional integrals and fractional differential equations , 2018, Numerische Mathematik.

[21]  Hong Li,et al.  A two-grid finite element approximation for a nonlinear time-fractional Cable equation , 2015, 1512.08082.

[22]  José António Tenreiro Machado,et al.  Solving Two-Dimensional Variable-Order Fractional Optimal Control Problems With Transcendental Bernstein Series , 2019, Journal of Computational and Nonlinear Dynamics.

[23]  Fanhai Zeng,et al.  Numerical Methods for Fractional Calculus , 2015 .

[24]  N. Ford,et al.  Higher order numerical methods for solving fractional differential equations , 2014 .

[25]  Bangti Jin,et al.  An analysis of the Crank–Nicolson method for subdiffusion , 2016, 1607.06948.

[26]  Mehdi Dehghan,et al.  Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition , 2016 .

[27]  Fawang Liu,et al.  High-order numerical methods for the Riesz space fractional advection-dispersion equations , 2016, ArXiv.

[28]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[29]  Michael E. Fisher,et al.  Toeplitz Determinants: Some Applications, Theorems, and Conjectures , 2007 .

[30]  Anatoly A. Alikhanov,et al.  A new difference scheme for the time fractional diffusion equation , 2014, J. Comput. Phys..

[31]  William McLean,et al.  A second-order accurate numerical method for a fractional wave equation , 2006, Numerische Mathematik.

[32]  I. Turner,et al.  Two New Implicit Numerical Methods for the Fractional Cable Equation , 2011 .

[33]  B. West Fractional Calculus in Bioengineering , 2007 .

[34]  Fawang Liu,et al.  Galerkin finite element method and error analysis for the fractional cable equation , 2015, Numerical Algorithms.

[35]  Z. Zhao,et al.  The discontinuous Galerkin finite element method for fractional cable equation , 2017 .

[36]  Yang Liu,et al.  Fast algorithm based on TT-M FE system for space fractional Allen-Cahn equations with smooth and non-smooth solutions , 2018, J. Comput. Phys..

[37]  S. Wearne,et al.  Fractional cable models for spiny neuronal dendrites. , 2008, Physical review letters.

[38]  Yang Liu,et al.  Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation , 2017, J. Comput. Phys..

[39]  Yang Liu,et al.  Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation , 2016 .

[40]  Zhimin Zhang,et al.  Two families of novel second-order fractional numerical formulas and their applications to fractional differential equations , 2019, ArXiv.

[41]  K. Shuler Advances in Chemical Physics: Stochastic Processes in Chemical Physics , 1969 .

[42]  Bangti Jin,et al.  Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data , 2016, SIAM J. Sci. Comput..