hp-Adaptive least squares spectral element method for hyperbolic partial differential equations

This paper describes a hp-adaptive spectral element formulation which is used to discretize the weak formulation obtained by minimizing the residuals in the L^2-norm. The least-squares error indicator will be briefly discussed. Refinement of the numerical approximation is based on an estimate of the regularity of the underlying exact solution; if the underlying exact solution is sufficiently smooth polynomial enrichment is employed, in areas with limited regularity h-refinement is used. For this purpose the Sobolev regularity is estimated. Functionally and geometrically non-conforming neighbouring elements are patched together using so-called mortar elements. Results of this approach are compared to uniform h- and p-refinement for a linear advection equation.

[1]  B. Jiang The Least-Squares Finite Element Method: Theory and Applications in Computational Fluid Dynamics and Electromagnetics , 1998 .

[2]  Marc I. Gerritsma,et al.  The use of Chebyshev Polynomials in the space-time least-squares spectral element method , 2005, Numerical Algorithms.

[3]  Thomas A. Manteuffel,et al.  LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .

[4]  Endre Süli,et al.  Sobolev Regularity Estimation for hp-Adaptive Finite Element Methods , 2003 .

[5]  M. M. J. Proot,et al.  Least-squares spectral elements applied to the Stokes problem , 2002 .

[6]  Michael M. J. Proot,et al.  Application of the least-squares spectral element method using Chebyshev polynomials to solve the incompressible Navier-Stokes equations , 2005, Numerical Algorithms.

[7]  Michael M. J. Proot,et al.  Analysis of a Discontinuous Least Squares Spectral Element Method , 2002, J. Sci. Comput..

[8]  B. Jiang On the least-squares method , 1998 .

[9]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[10]  George Em Karniadakis,et al.  Unstructured spectral element methods for simulation of turbulent flows , 1995 .

[11]  Timothy Nigel Phillips,et al.  Spectral element methods for axisymmetric Stokes problems , 2000 .

[12]  J. N. Reddy,et al.  Spectral/ hp least-squares finite element formulation for the Navier-Stokes equations , 2003 .

[13]  M.M.J. Proot The least-squares spectral element method: Theory, implementation and application to incompressible flows , 2003 .

[14]  Anthony T. Patera,et al.  Nonconforming mortar element methods: Application to spectral discretizations , 1988 .

[15]  Marc I. Gerritsma,et al.  Higher-Order Gauss–Lobatto Integration for Non-Linear Hyperbolic Equations , 2006, J. Sci. Comput..

[16]  Jinn-Liang Liu,et al.  Exact a posteriori error analysis of the least squares finite element method , 2000, Appl. Math. Comput..

[17]  Michael M. J. Proot,et al.  A Least-Squares Spectral Element Formulation for the Stokes Problem , 2002, J. Sci. Comput..

[18]  J. P. Pontaza,et al.  Space-time coupled spectral/ hp least-squares finite element formulation for the incompressible Navier-Stokes equations , 2004 .