Statistical shape modelling for expression-invariant face analysis and recognition

Paper introduces a 3-D shape representation scheme for automatic face analysis and identification, and demonstrates its invariance to facial expression. The core of this scheme lies on the combination of statistical shape modelling and non-rigid deformation matching. While the former matches 3-D faces with facial expression, the latter provides a low-dimensional feature vector that controls the deformation of model for matching the shape of new input, thereby enabling robust identification of 3-D faces. The proposed scheme is also able to handle the pose variation without large part of missing data. To assist the establishment of dense point correspondences, a modified free-form-deformation based on B-spline warping is applied with the help of extracted landmarks. The hybrid iterative closest point method is introduced for matching the models and new data. The feasibility and effectiveness of the proposed method was investigated using standard publicly available Gavab and BU-3DFE datasets, which contain faces with expression and pose changes. The performance of the system was compared with that of nine benchmark approaches. The experimental results demonstrate that the proposed scheme provides a competitive solution for face recognition.

[1]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Alberto Del Bimbo,et al.  3D Face Recognition by Modeling the Arrangement of Concave and Convex Regions , 2006, Adaptive Multimedia Retrieval.

[3]  M. Pietikäinen,et al.  A discriminative feature space for detecting and recognizing faces , 2004, CVPR 2004.

[4]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[5]  Dimitrios Hatzinakos,et al.  Iterative Closest Normal Point for 3D Face Recognition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Hao Zhang,et al.  Expression-insensitive 3D face recognition using sparse representation , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Gordon Erlebacher,et al.  A novel technique for face recognition using range imaging , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[8]  Anil K. Jain,et al.  Deformation Modeling for Robust 3D Face Matching , 2006, CVPR.

[9]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  J. Vélez,et al.  Face recognition using 3D local geometrical features: PCA vs. SVM , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[11]  Jun Wang,et al.  A 3D facial expression database for facial behavior research , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[12]  L. Shark,et al.  Facial Expression Recognition Using Diffeomorphic Image Registration Framework , 2013 .

[13]  Anuj Srivastava,et al.  Three-Dimensional Face Recognition Using Shapes of Facial Curves , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  M. Grgic,et al.  Appearance-based statistical methods for face recognition , 2005, 47th International Symposium ELMAR, 2005..

[15]  Anil K. Jain,et al.  Matching 2.5D face scans to 3D models , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Frank B. ter Haar,et al.  Expression modeling for expression-invariant face recognition , 2010, Comput. Graph..

[17]  Jake K. Aggarwal,et al.  3D Face Recognition Founded on the Structural Diversity of Human Faces , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Ashok Samal,et al.  How effective are landmarks and their geometry for face recognition? , 2006, Comput. Vis. Image Underst..

[19]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[21]  P. Jonathon Phillips,et al.  Support Vector Machines Applied to Face Recognition , 1998, NIPS.

[22]  Jürgen Weese,et al.  Landmark-based elastic registration using approximating thin-plate splines , 2001, IEEE Transactions on Medical Imaging.

[23]  I. Masuda,et al.  3D facial image analysis for human identification , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[24]  Liyan Zhang,et al.  3D face authentication and recognition based on bilateral symmetry analysis , 2005, The Visual Computer.

[25]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[26]  Bogdan J. Matuszewski,et al.  Facial Expression Biometrics Using Statistical Shape Models , 2009, EURASIP J. Adv. Signal Process..

[27]  Gaile G. Gordon,et al.  Face recognition based on depth and curvature features , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Rama Chellappa,et al.  Face Recognition by Computers and Humans , 2010, Computer.

[30]  Jun-yong Noh,et al.  Expression cloning , 2001, SIGGRAPH 2001.

[31]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[32]  Anuj Srivastava,et al.  Face recognition using optimal linear components of range images , 2006, Image Vis. Comput..

[33]  6.891 Computer Vision and Applications , 2022 .

[34]  Zezhi Chen,et al.  Face Recognition: A Comparison of Appearance-Based Approaches , 2003, DICTA.

[35]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Inderjit S. Dhillon,et al.  Weighted Graph Cuts without Eigenvectors A Multilevel Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Abolghasem A. Raie,et al.  2.5D face recognition using Patch Geodesic Moments , 2012, Pattern Recognit..

[38]  Andreas Nüchter,et al.  GPU-Accelerated Nearest Neighbor Search for 3D Registration , 2009, ICVS.

[39]  Hassen Drira,et al.  Pose and Expression-Invariant 3D Face Recognition using Elastic Radial Curves , 2010, BMVC.

[40]  Bogdan J. Matuszewski,et al.  Facial asymmetry analysis based on 3-D dynamic scans , 2012, 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[41]  Shengsheng Yu,et al.  A Survey of Face Detection, Extraction and Recognition , 2003, Comput. Artif. Intell..

[42]  Rabia Jafri,et al.  A Survey of Face Recognition Techniques , 2009, J. Inf. Process. Syst..

[43]  Xiaoou Tang,et al.  Robust 3D Face Recognition by Local Shape Difference Boosting , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[45]  Yoshiaki Shirai 3D computer vision and applications , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[46]  Bernd Jähne,et al.  Computer vision and applications: a guide for students and practitioners , 2000 .

[47]  Mohammad H. Mahoor,et al.  Face recognition based on 3D ridge images obtained from range data , 2009, Pattern Recognit..

[48]  Maurício Pamplona Segundo,et al.  3D Face Recognition Using Simulated Annealing and the Surface Interpenetration Measure , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[50]  Ashok Samal,et al.  Automatic recognition and analysis of human faces and facial expressions: a survey , 1992, Pattern Recognit..

[51]  Stefanos Zafeiriou,et al.  Recognition of 3D facial expression dynamics , 2012, Image Vis. Comput..

[52]  Alexander M. Bronstein,et al.  Multigrid multidimensional scaling , 2006, Numer. Linear Algebra Appl..

[53]  Richard Kitney,et al.  An Edge Detection Technique Using the Facet Model and Parameterized Relaxation Labeling , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[54]  Richard M. Leahy,et al.  Optimization of landmark selection for cortical surface registration , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Seong G. Kong,et al.  Recent advances in visual and infrared face recognition - a review , 2005, Comput. Vis. Image Underst..

[56]  Michael G. Strintzis,et al.  3-D Face Recognition With the Geodesic Polar Representation , 2007, IEEE Transactions on Information Forensics and Security.

[57]  Hyeonjoon Moon,et al.  The FERET verification testing protocol for face recognition algorithms , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[58]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[59]  Bogdan J. Matuszewski,et al.  Facial Expression Recognition using Log-Euclidean Statistical Shape Models , 2017, ICPRAM.

[60]  Ammad Ali,et al.  Face Recognition with Local Binary Patterns , 2012 .

[61]  José F. Vélez,et al.  Face recognition using 3D surface extracted descriptors , 2003 .

[62]  A. Yezzi,et al.  Local or Global Minima: Flexible Dual-Front Active Contours , 2007 .

[63]  Hiromi T. Tanaka,et al.  Curvature-based face surface recognition using spherical correlation. Principal directions for curved object recognition , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[64]  Stefanos Zafeiriou,et al.  A dynamic approach to the recognition of 3D facial expressions and their temporal models , 2011, Face and Gesture 2011.

[65]  Alexander M. Bronstein,et al.  Three-Dimensional Face Recognition , 2005, International Journal of Computer Vision.

[66]  O. A. Fakolujo,et al.  A survey of face recognition techniques , 2007 .

[67]  Anil K. Jain,et al.  Deformation Modeling for Robust 3D Face Matching , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Di Huang,et al.  3-D Face Recognition Using eLBP-Based Facial Description and Local Feature Hybrid Matching , 2012, IEEE Transactions on Information Forensics and Security.