Detecting and measuring individual trees using an airborne laser scanner

High-resolution airborne laser scanner data offer the possibility to detect and measure individual trees. In this study, an algorithm which estimated position, height, and crown diameter of individual trees was validated with field measurements. Because all the trees in this study were measured on the ground with high accuracy, their positions could be linked with laser measurements, making validation on an individual tree basis possible. In total, 71 percent of the trees were correctly detected using laser scanner data. Because a large portion of the undetected trees had a small stem diameter, 91 percent of the total stem volume was detected. Height and crown diameter of detected trees could be estimated with a root-mean-square error (RMSE) of 0.63 m and 0.61 m, respectively. Stem diameter was estimated, using laser measured tree height and crown diameter, with an RMSE of 3.8 cm. Different laser beam diameters (0.26 to 3.68 m) were also tested, the smallest beam size showing a better detection rate in dense forest. However, estimates of tree height and crown diameter were not affected much by different beam size.