On concentration of distributions of random weighted sums

For noncorrelated random variables, we study the rate of approximation of distributions of weighted sums by "typical'' distributions.

[1]  A. Prékopa On logarithmic concave measures and functions , 1973 .

[2]  S. Bobkov Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .

[3]  M. Ledoux Concentration of measure and logarithmic Sobolev inequalities , 1999 .

[4]  B. Grünbaum Partitions of mass-distributions and of convex bodies by hyperplanes. , 1960 .

[5]  H. Weizsäcker,et al.  Sudakov's typical marginals, random linear functionals and a conditional central limit theorem , 1997 .

[6]  R. Latala On the Equivalence Between Geometric and Arithmetic Means for Log-Concave Measures , 1998 .

[7]  C. Mueller,et al.  Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere , 1982 .

[8]  The subindependence of coordinate slabs inlpn balls , 1998 .

[9]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[10]  Olivier Guédon,et al.  Kahane-Khinchine type inequalities for negative exponent , 1999 .

[11]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[12]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[13]  M. Émery,et al.  Seminaire de Probabilites XXXIII , 1999 .

[14]  D. Freedman,et al.  Asymptotics of Graphical Projection Pursuit , 1984 .

[15]  Robert H. Bowmar Limit theorems for sums of independent random variables , 1962 .

[16]  Keith Ball,et al.  The central limit problem for convex bodies , 2003 .