Spectral Method for Navier–Stokes Equations with Slip Boundary Conditions

In this paper, we propose a spectral method for the $$n$$n-dimensional Navier–Stokes equations with slip boundary conditions by using divergence-free base functions. The numerical solutions fulfill the incompressibility and the physical boundary conditions automatically. Therefore, we need neither the artificial compressibility method nor the projection method. Moreover, we only have to evaluate the unknown coefficients of expansions of $$n-1$$n−1 components of the velocity. These facts simplify actual computation and numerical analysis essentially, and also save computational time. As the mathematical foundation of this new approach, we establish some approximation results, with which we prove the spectral accuracy in space of the proposed algorithm. Numerical results demonstrate its high efficiency and coincide the analysis very well. The main idea, the approximation results and the techniques developed in this paper are also applicable to numerical simulations of other problems with divergence-free solutions, such as certain partial differential equations describing electro-magnetic fields.

[1]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[2]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[3]  Ben-Yu Guo,et al.  Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations , 2000 .

[4]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[5]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[6]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[7]  Pierre Degond,et al.  An analysis of the Darwin model of approximation to Maxwell’s equations , 1992 .

[8]  Guo Ben-yu,et al.  Spectral method for vorticity‐stream function form of Navier–Stokes equations with slip boundary conditions , 2012 .

[9]  Guo Ben-yu,et al.  The Fully Discrete Legendre Spectral Approximation of Two-Dimensional Unsteady Incompressible Fluid Flow in Stream Function Form , 1998 .

[10]  R. Temam Navier-Stokes Equations , 1977 .

[11]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[12]  A. Chorin The Numerical Solution of the Navier-Stokes Equations for an Incompressible Fluid , 2015 .

[13]  R. Sani,et al.  On pressure boundary conditions for the incompressible Navier‐Stokes equations , 1987 .

[14]  J. Guermond,et al.  Uncoupled Psi-Omega Formulation for Plane Lows in Multiply Connected Domains , 1997 .

[15]  Ben-yu Guo,et al.  Mixed Laguerre-Legendre pseudospectral method for incompressible fluid flow in an infinite strip , 2004, Math. Comput..

[16]  Guo Ben-Yu,et al.  Combined finite element and pseudospectral method for the two-dimensional evolutionary Navier-Stokes equations , 1993 .

[17]  Zdzisław Kamont,et al.  Difference methods for non-linear partial differential equations of the first order , 1988 .

[18]  Ben-yu Guo,et al.  Spectral Method For Navier–Stokes Equations With Non-slip Boundary Conditions By Using Divergence-Free Base Functions , 2016, J. Sci. Comput..

[19]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[20]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[21]  Ben-yu Guo,et al.  Navier–Stokes equations with slip boundary conditions , 2008 .

[22]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[23]  Jie Shen,et al.  Generalized Jacobi polynomials/functions and their applications , 2009 .

[24]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[25]  Jie Shen,et al.  Optimal Spectral-Galerkin Methods Using Generalized Jacobi Polynomials , 2006, J. Sci. Comput..

[26]  Gabriel N. Gatica,et al.  On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2 , 1992 .

[27]  Jean-Luc Guermond,et al.  Uncoupled ω–ψ Formulation for Plane Flows in Multiply Connected Domains , 1997 .

[28]  Gabriel N. Gatica,et al.  The Coupling of Boundary Element and Finite Element Methods for a Nonlinear Exterior Boundary Value Problem , 1989 .

[29]  Alfio Quarteroni,et al.  Spectral and Pseudo-Spectral Approximations of the Navier–Stokes Equations , 1982 .

[30]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[31]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[32]  Piotr Bogusław Mucha,et al.  On Navier–Stokes Equations with Slip Boundary Conditions in an Infinite Pipe , 2003 .

[33]  Gerd Baumann,et al.  Navier–Stokes Equations on R3 × [0, T] , 2016 .

[34]  Ole H. Hald,et al.  Convergence of Fourier Methods for Navier-Stokes Equations , 1981 .

[35]  Miloslav Feistauer,et al.  Coupling of an Interior Navier—Stokes Problem with an Exterior Oseen Problem , 2001 .

[36]  Shouhong Wang,et al.  Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics , 2005 .

[37]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[38]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[39]  Volker John,et al.  Time‐dependent flow across a step: the slip with friction boundary condition , 2006 .

[40]  R. Winther,et al.  Numerical methods for incompressible viscous flow , 2002 .