Towards a Learning Optimizer for Shared Clouds
暂无分享,去创建一个
Hiren Patel | Alekh Jindal | Saeed Amizadeh | Sriram Rao | Chenggang Wu | Shi Qiao | Wangchao Le | Sriram Rao | Alekh Jindal | Hiren Patel | S. Qiao | Chenggang Wu | S. Amizadeh | Wangchao Le
[1] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[2] M. Stone. Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .
[3] V. Barnett,et al. Applied Linear Statistical Models , 1975 .
[4] Patricia G. Selinger,et al. Access path selection in a relational database management system , 1979, SIGMOD '79.
[5] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[6] Stavros Christodoulakis,et al. On the propagation of errors in the size of join results , 1991, SIGMOD '91.
[7] Goetz Graefe,et al. The Volcano optimizer generator: extensibility and efficient search , 1993, Proceedings of IEEE 9th International Conference on Data Engineering.
[8] G. Graefe. The Cascades Framework for Query Optimization , 1995, IEEE Data Eng. Bull..
[9] E. Mulvey,et al. Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. , 1995, Psychological bulletin.
[10] Alon Y. Halevy,et al. An adaptive query execution system for data integration , 1999, SIGMOD '99.
[11] Volker Markl,et al. LEO - DB2's LEarning Optimizer , 2001, VLDB.
[12] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[13] Hamid Pirahesh,et al. Robust query processing through progressive optimization , 2004, SIGMOD '04.
[14] Jingren Zhou,et al. SCOPE: easy and efficient parallel processing of massive data sets , 2008, Proc. VLDB Endow..
[15] Surajit Chaudhuri,et al. A pay-as-you-go framework for query execution feedback , 2008, Proc. VLDB Endow..
[16] Pete Wyckoff,et al. Hive - A Warehousing Solution Over a Map-Reduce Framework , 2009, Proc. VLDB Endow..
[17] Mohamed A. Soliman,et al. Testing the accuracy of query optimizers , 2012, DBTest '12.
[18] Nicolas Bruno,et al. SCOPE: parallel databases meet MapReduce , 2012, The VLDB Journal.
[19] Srikanth Kandula,et al. Reoptimizing Data Parallel Computing , 2012, NSDI.
[20] Ion Stoica,et al. BlinkDB: queries with bounded errors and bounded response times on very large data , 2012, EuroSys '13.
[21] Nicolas Bruno,et al. Continuous Cloud-Scale Query Optimization and Processing , 2013, Proc. VLDB Endow..
[22] Andrey Balmin,et al. Dynamically optimizing queries over large scale data platforms , 2014, SIGMOD Conference.
[23] Liwen Sun,et al. Fine-grained partitioning for aggressive data skipping , 2014, SIGMOD Conference.
[24] Wei Lin,et al. Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing , 2014, OSDI.
[25] Viktor Leis,et al. How Good Are Query Optimizers, Really? , 2015, Proc. VLDB Endow..
[26] Guigang Zhang,et al. Deep Learning , 2016, Int. J. Semantic Comput..
[27] Steffen Zeuch,et al. Non-Invasive Progressive Optimization for In-Memory Databases , 2016, Proc. VLDB Endow..
[28] Srikanth Kandula,et al. Quickr: Lazily Approximating Complex AdHoc Queries in BigData Clusters , 2016, SIGMOD Conference.
[29] Carlo Curino,et al. Morpheus: Towards Automated SLOs for Enterprise Clusters , 2016, OSDI.
[30] Christoph Koch,et al. A Fast Randomized Algorithm for Multi-Objective Query Optimization , 2016, SIGMOD Conference.
[31] Carlo Curino,et al. PerfOrator: eloquent performance models for Resource Optimization , 2016, SoCC.
[32] Chris Douglas,et al. Azure Data Lake Store: A Hyperscale Distributed File Service for Big Data Analytics , 2017, SIGMOD Conference.
[33] Samuel Madden,et al. A robust partitioning scheme for ad-hoc query workloads , 2017, SoCC.
[34] Geoffrey J. Gordon,et al. Automatic Database Management System Tuning Through Large-scale Machine Learning , 2017, SIGMOD Conference.
[35] Hiren Patel,et al. Computation Reuse in Analytics Job Service at Microsoft , 2018, SIGMOD Conference.
[36] Hiren Patel,et al. Selecting Subexpressions to Materialize at Datacenter Scale , 2018, Proc. VLDB Endow..
[37] Alekh Jindal,et al. Thou Shall Not Recompute: Selecting Subexpressions to Materialize at Datacenter Scale , 2018 .
[38] Tim Kraska,et al. The Case for Learned Index Structures , 2018 .