Towards accurate modelling of galaxy clustering on small scales: testing the standard ΛCDM + halo model

Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard $\Lambda\mathrm{CDM}$ + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3$\sigma$ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.

[1]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[2]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[3]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[4]  R. Nichol,et al.  On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.

[5]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[6]  R. Scoccimarro The Bispectrum: From Theory to Observations , 2000, astro-ph/0004086.

[7]  Andrew P. Hearin,et al.  Assessing Colour-dependent Occupation Statistics Inferred from Galaxy Group Catalogues , 2015, 1505.04798.

[8]  D. Hogg,et al.  THE EXTREME SMALL SCALES: DO SATELLITE GALAXIES TRACE DARK MATTER? , 2011, 1108.1195.

[9]  F. Beutler,et al.  The 6dF Galaxy Survey: dependence of halo occupation on stellar mass , 2012, 1212.3610.

[10]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[11]  R. Nichol,et al.  Modelling the redshift-space three-point correlation function in SDSS-III , 2014, 1409.7389.

[12]  R. Wechsler,et al.  THE DEPENDENCE OF SUBHALO ABUNDANCE ON HALO CONCENTRATION , 2015, 1503.02637.

[13]  Andrew P. Hearin,et al.  Constraints on assembly bias from galaxy clustering , 2016, Monthly Notices of the Royal Astronomical Society.

[14]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[15]  Modelling the evolution of galaxy clustering , 1998, astro-ph/9811222.

[16]  S. Borgani,et al.  The effects of baryons on the halo mass function , 2011, 1111.3066.

[17]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[18]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[19]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[20]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[21]  Cheng Li,et al.  The phase-space parameters of the brightest halo galaxies , 2005, astro-ph/0502466.

[22]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[23]  R. Wechsler,et al.  Galaxy halo occupation at high redshift , 2001, astro-ph/0106293.

[24]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[25]  M. White,et al.  Red Galaxy Growth and the Halo Occupation Distribution , 2008, 0804.2293.

[26]  J. Rhodes,et al.  EVOLUTION OF THE STELLAR-TO-DARK MATTER RELATION: SEPARATING STAR-FORMING AND PASSIVE GALAXIES FROM z = 1 TO 0 , 2013, 1308.2974.

[27]  S. White,et al.  There's no place like home? Statistics of Milky Way-mass dark matter haloes , 2009, 0911.4484.

[28]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[29]  F. V. D. Bosch,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[30]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[31]  Andrew P. Hearin,et al.  Galaxy assembly bias: a significant source of systematic error in the galaxy–halo relationship , 2013, 1311.1818.

[32]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[33]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[34]  D. Madgwick,et al.  Constraining Evolution in the Halo Model Using Galaxy Redshift Surveys , 2003, astro-ph/0307248.

[35]  J. Comparat,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: modelling of the luminosity and colour dependence in the Data Release 10 , 2014, 1401.3009.

[36]  Case Western Reserve University,et al.  Galaxy evolution from halo occupation distribution modeling of deep2 and sdss galaxy clustering , 2007, astro-ph/0703457.

[37]  Guinevere Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1999 .

[38]  Ofer Lahav,et al.  Distribution of red and blue galaxies in groups: an empirical test of the halo model , 2005 .

[39]  Christopher J. Miller,et al.  Percolation Galaxy Groups and Clusters in the SDSS Redshift Survey: Identification, Catalogs, and the Multiplicity Function , 2006, astro-ph/0601346.

[40]  R. Mandelbaum,et al.  Halo masses for optically selected and for radio-loud AGN from clustering and galaxy-galaxy lensing , 2008, 0806.4089.

[41]  K. Subramanian,et al.  Spatial Clustering of High Redshift Lyman Break Galaxies , 2012, 1208.2097.

[42]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[43]  Virial masses of galactic haloes from galaxy–galaxy lensing: theoretical modelling and application to Sloan Digital Sky Survey data , 2002, astro-ph/0201448.

[44]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[45]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[46]  C. Baugh,et al.  The Halo Occupation Distribution and the Physics of Galaxy Formation , 2002, astro-ph/0212357.

[47]  Breaking the Degeneracies between Cosmology and Galaxy Bias , 2005, astro-ph/0512071.

[48]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[49]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[50]  F. V. D. Bosch,et al.  Linking early‐ and late‐type galaxies to their dark matter haloes , 2002, astro-ph/0210495.

[51]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[52]  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[53]  Daniel S. Katz,et al.  The Journal of Open Source Software , 2017 .

[54]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[55]  A. Cooray Halo model at its best: constraints on conditional luminosity functions from measured galaxy statistics , 2005, astro-ph/0509033.

[56]  L. Moustakas,et al.  The Masses, Ancestors, and Descendants of Extremely Red Objects: Constraints from Spatial Clustering , 2001, astro-ph/0110584.

[57]  Matthew Colless,et al.  The 6dF Galaxy Survey: Samples, observational techniques and the first data release , 2004, astro-ph/0403501.

[58]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[59]  S. More,et al.  Cosmological Constraints from a Combination of Galaxy Clustering and Lensing -- III. Application to SDSS Data , 2012, 1207.0503.

[60]  Risa H. Wechsler,et al.  The Physics of Galaxy Clustering. I. A Model for Subhalo Populations , 2005 .

[61]  Locally Biased Galaxy Formation and Large-Scale Structure , 1998, astro-ph/9812002.

[62]  Interpreting the Observed Clustering of Red Galaxies at z ~ 3 , 2003, astro-ph/0307030.

[63]  C. Baugh,et al.  The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos , 2017, 1706.07871.

[64]  A. Myers,et al.  THE HALO OCCUPATION DISTRIBUTION OF X-RAY-BRIGHT ACTIVE GALACTIC NUCLEI: A COMPARISON WITH LUMINOUS QUASARS , 2013, 1303.2942.

[65]  K. Dawson,et al.  Velocity bias from the small-scale clustering of SDSS-III BOSS galaxies , 2014, 1407.4811.

[66]  Zheng Zheng,et al.  Accurate and efficient halo-based galaxy clustering modelling with simulations , 2015, 1506.07523.

[67]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[68]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[69]  Brigitta Sipocz,et al.  Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools , 2016, 1606.04106.

[70]  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[71]  D. Wake,et al.  The clustering of radio galaxies at z≃ 0.55 from the 2SLAQ LRG survey , 2008, 0810.1050.

[72]  J. Tinker,et al.  WHAT DOES CLUSTERING TELL US ABOUT THE BUILDUP OF THE RED SEQUENCE? , 2009, 0909.1325.

[73]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[74]  Properties of host haloes of Lyman-break galaxies and Lyman α emitters from their number densities and angular clustering , 2003, astro-ph/0307207.

[75]  M. Magliocchetti,et al.  The halo distribution of 2dF galaxies , 2003 .

[76]  S. More,et al.  Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.

[77]  P. G. Jonker,et al.  American Astronomical Society Meeting Abstracts , 2011 .

[78]  O. Lahav,et al.  Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts , 2007, 0704.3377.

[79]  Andrew P. Hearin,et al.  SHAM Beyond Clustering: New Tests of Galaxy-Halo Abundance Matching with Galaxy Groups , 2012, 1210.4927.

[80]  THE MASSES , ANCESTORS AND DESCENDENTS OF EXTREMELY RED OBJECTS : CONSTRAINTS FROM SPATIAL CLUSTERING , 2002 .

[81]  C. McBride,et al.  MODELING THE VERY SMALL SCALE CLUSTERING OF LUMINOUS RED GALAXIES , 2009, 0908.3678.

[82]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[83]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: the low-redshift sample , 2012, 1211.3976.

[84]  Mamoru Doi,et al.  Estimating Fixed-Frame Galaxy Magnitudes in the Sloan Digital Sky Survey , 2002, astro-ph/0205243.

[85]  A. Leauthaud,et al.  A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER , 2011, 1103.2077.

[86]  Erik Tollerud,et al.  Introducing decorated HODs: modelling assembly bias in the galaxy–halo connection , 2015, 1512.03050.

[87]  A. Berlind,et al.  A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION , 2011, 1101.5155.

[88]  Manodeep Sinha,et al.  Corrfunc: Blazing fast correlation functions with AVX512F SIMD Intrinsics , 2019, Communications in Computer and Information Science.

[89]  The three-point function in large-scale structure: redshift distortions and galaxy bias , 2005, astro-ph/0501637.

[90]  Spatial Correlation Function and Pairwise Velocity Dispersion of Galaxies: Cold Dark Matter Models versus the Las Campanas Survey , 1997, astro-ph/9707106.

[91]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[92]  B. Lundgren,et al.  GALAXY CLUSTERING IN THE NEWFIRM MEDIUM BAND SURVEY: THE RELATIONSHIP BETWEEN STELLAR MASS AND DARK MATTER HALO MASS AT 1 < z < 2 , 2010, 1012.1317.

[93]  A. Connolly,et al.  THREE-POINT CORRELATION FUNCTIONS OF SDSS GALAXIES: LUMINOSITY AND COLOR DEPENDENCE IN REDSHIFT AND PROJECTED SPACE , 2010, 1007.2414.

[94]  J. Comparat,et al.  Redshift-Space Clustering of SDSS Galaxies — Luminosity Dependence, Halo Occupation Distribution, and Velocity Bias , 2015, 1505.07861.

[95]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[96]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[97]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[98]  S. More,et al.  Satellite kinematics – II. The halo mass–luminosity relation of central galaxies in SDSS , 2008, 0807.4532.

[99]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[100]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[101]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[102]  D. P. Schneider,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2005 .

[103]  Alexie Leauthaud,et al.  A 2.5 per cent measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies , 2014, 1404.3742.

[104]  F. Marin THE LARGE-SCALE THREE-POINT CORRELATION FUNCTION OF SLOAN DIGITAL SKY SURVEY LUMINOUS RED GALAXIES , 2010, 1011.4530.

[105]  U. Seljak,et al.  Virial masses of galactic halos from galaxy-galaxy lensing : theoretical modeling and application to SDSS , 2002 .

[106]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[107]  Case Western Reserve University,et al.  HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.

[108]  D. Eisenstein,et al.  Correlations in the Spatial Power Spectra Inferred from Angular Clustering: Methods and Application to the Automated Plate Measuring Survey , 2001 .

[109]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[110]  C. McBride,et al.  THE SPATIAL DISTRIBUTION OF SATELLITE GALAXIES WITHIN HALOS: MEASURING THE VERY SMALL SCALE ANGULAR CLUSTERING OF SDSS GALAXIES , 2014, 1407.6740.

[111]  C. Baugh,et al.  Clustering of extremely red objects in Elais-N1 from the UKIDSS DXS with optical photometry from Pan-STARRS 1 and Subaru , 2013, 1311.4624.

[112]  J. Tinker,et al.  On the Mass-to-Light Ratio of Large-Scale Structure , 2004, astro-ph/0411777.

[113]  Shaun Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994 .

[114]  E. Bertschinger,et al.  Statistics of Primordial Density Perturbations from Discrete Seed Masses , 1991 .

[115]  J. Neyman,et al.  A theory of the spatial distribution of galaxies , 1952 .

[116]  C. Baugh,et al.  Statistical analysis of galaxy surveys – I. Robust error estimation for two-point clustering statistics , 2008, 0810.1885.

[117]  J. Tinker,et al.  INTERPRETING THE CLUSTERING OF DISTANT RED GALAXIES , 2009, 0902.1748.

[118]  S. White,et al.  Halo assembly bias and its effects on galaxy clustering , 2006, astro-ph/0605636.

[119]  J. Brinchmann,et al.  The VIMOS-VLT Deep Survey: evolution in the halo occupation number since z∼ 1★ , 2010, 1003.6129.

[120]  Aniruddha R. Thakar,et al.  The Third Data Release of the Sloan Digital Sky Survey , 2004 .

[121]  Roman Scoccimarro Transients from initial conditions: a perturbative analysis , 1998 .

[122]  N. Nikoloudakis,et al.  Clustering analysis of high-redshift luminous red galaxies in Stripe 82 , 2012, 1204.3609.

[123]  H. Ferguson,et al.  The Large-Scale and Small-Scale Clustering of Lyman Break Galaxies at 3.5 ⩽ z ⩽ 5.5 from the GOODS Survey , 2005, astro-ph/0508090.