Impact of IEEE 802.11n/ac PHY/MAC High Throughput Enhancements over Transport/Application Layer Protocols - A Survey

Since the inception of Wireless Local Area Networks (WLANs) in the year 1997, it has tremendously grown in the last few years. IEEE 802.11 is popularly known as WLAN. To provide the last mile wireless broadband connectivity to users, IEEE 802.11 is enriched with IEEE 802.11a, IEEE 802.11b and IEEE 802.11g. More recently, IEEE 802.11n, IEEE 802.11ac and IEEE 802.11ad are introduced with enhancements to the physical (PHY) layer and medium access control (MAC) sublayer to provide much higher data rates and thus these amendments are called High Throughput WLANs (HT-WLANs). For both standards, PHY is enhanced with multiple-input multiple-output (MIMO) antenna technologies, channel bonding, short guard intervals (SGI), enhanced modulation and coding schemes (MCS). At the same time, MAC layer overhead is reduced by introducing frame aggregation and block acknowledgement technologies. However, existing studies reveal that although PHY and MAC enhancements promise to improve physical data rate significantly, they yield negative impact over upper layer protocols -- mainly for reliable end-to-end transport/application layer protocols. As a consequence, a large number of schools have focused researches on HT-WLANs to improve the coordination among PHY/MAC and upper layer protocols and thus, boost up the performance benefit. In this survey, we discuss the impact of enhancements of PHY/MAC layer in HT-WLANs over transport/application layer protocols. list down different open challenges that can be explored for the development of next generation HT-WLAN technologies.

[1]  Chulho Chung,et al.  Saturation throughput analysis of IEEE 802.11ac TXOP sharing mode , 2015 .

[2]  Songwu Lu,et al.  MIMO rate adaptation in 802.11n wireless networks , 2010, MobiCom.

[3]  José Roberto Boisson de Marca,et al.  On the use Of IEEE 802.11n frame aggregation for efficient transport of scalable video streaming , 2013, 2013 IEEE Wireless Communications and Networking Conference (WCNC).

[4]  Wei Hong,et al.  Design and realization of a highly integrated IEEE802.11n wireless access point radio , 2008, 2008 International Conference on Microwave and Millimeter Wave Technology.

[5]  Osama M. F. Abu-Sharkh,et al.  The impact of multi-rate operation on A-MSDU, A-MPDU and block acknowledgment in greenfield IEEE802.11n wireless LANs , 2011, 2011 Wireless Advanced.

[6]  Per Zetterberg Interference alignment (IA) and coordinated multi-point (CoMP) with IEEE802.11AC feedback compression: Testbed results , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[7]  Tokunbo Ogunfunmi,et al.  Evolution, insights and challenges of the PHY layer for the emerging ieee 802.11n amendment , 2009, IEEE Communications Surveys & Tutorials.

[8]  M. Samih,et al.  Impact of TCP Congestion Control Algorithms on IEEE 802 . 11 n MAC Frame Aggregation , 2012 .

[9]  Zhaoxing Li,et al.  Modeling the TXOP Sharing Mechanism of IEEE 802.11ac Enhanced Distributed Channel Access in Non-Saturated Conditions , 2015, IEEE Communications Letters.

[10]  Xiaoming Chen,et al.  Beamforming design for secure downlink transmission of MU-MIMO systems with multi-antenna eavesdropper , 2016, 2016 IEEE International Conference on Communications (ICC).

[11]  Leo Monteban,et al.  WaveLAN®-II: A high-performance wireless LAN for the unlicensed band , 1997, Bell Labs Technical Journal.

[12]  Jaeseok Kim,et al.  Adaptive CSI feedback scheme to maximize the throughput in IEEE 802.11ac system , 2014, The 18th IEEE International Symposium on Consumer Electronics (ISCE 2014).

[13]  O. M. F. Abu-Sharkh,et al.  Dynamic multi-band allocation scheme for a stand-alone wireless access point , 2012, 2012 26th Biennial Symposium on Communications (QBSC).

[14]  David Wetherall,et al.  Predictable 802.11 packet delivery from wireless channel measurements , 2010, SIGCOMM '10.

[15]  Vanaja Ramaswamy,et al.  A Bi-Scheduler Algorithm for Frame Aggregation in IEEE 802.11n , 2014, ArXiv.

[16]  Kun-Ju Tsai,et al.  Channel estimation in a proposed IEEE802.11n OFDM MIMO WLAN System , 2007, 2007 IEEE Sarnoff Symposium.

[17]  Sin-Chong Park,et al.  An Iterative SNR Estimator for Link Adaptation in IEEE 802.11n System , 2008 .

[18]  Ming-Syan Chen,et al.  Rate Adaptation for 802.11 Multiuser MIMO Networks , 2012, IEEE Transactions on Mobile Computing.

[19]  Chiu Ngo,et al.  Multi-user support in next generation wireless LAN , 2011, 2011 IEEE Consumer Communications and Networking Conference (CCNC).

[20]  Janne Riihijärvi,et al.  Measurement-based study of the performance of IEEE 802.11ac in an indoor environment , 2014, 2014 IEEE International Conference on Communications (ICC).

[21]  Mohsin Ali,et al.  Loss differentiation: Moving onto high-speed wireless LANs , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[22]  Kevin C. Almeroth,et al.  Joint rate and channel width adaptation for 802.11 MIMO wireless networks , 2013, 2013 IEEE International Conference on Sensing, Communications and Networking (SECON).

[23]  Mounir Hamdi,et al.  Smart sender: a practical rate adaptation algorithm for multirate IEEE 802.11 WLANs , 2008, IEEE Transactions on Wireless Communications.

[24]  Toshihisa Nabetani,et al.  A Simple and Efficient Selective Repeat Scheme for High Throughput WLAN, IEEE802.11n , 2007, 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring.

[25]  Boris Bellalta,et al.  Channel Bonding in Short-Range WLANs , 2014 .

[26]  Mung Chiang,et al.  SAMU: Design and implementation of selectivity-aware MU-MIMO for wideband WiFi , 2015, 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).

[27]  M. A. Mohamed,et al.  A Performance Evaluation for Rate Adaptation Algorithms in IEEE 802. 11 Wireless Networks , 2014 .

[28]  Khaled Ben Letaief,et al.  Open-Loop Link Adaptation for Next-Generation IEEE 802.11n Wireless Networks , 2009, IEEE Transactions on Vehicular Technology.

[29]  Mohamed Othman,et al.  A Reliable A-MSDU Frame Aggregation Scheme in 802.11n Wireless Networks , 2013, EUSPN/ICTH.

[30]  Mohamed Othman,et al.  SRA-MSDU: Enhanced A-MSDU frame aggregation with selective retransmission in 802.11n wireless networks , 2013, J. Netw. Comput. Appl..

[31]  Michelle X. Gong,et al.  A CSMA/CA MAC Protocol for Multi-User MIMO Wireless LANs , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[32]  Huey-Ming Lee,et al.  The IEEE802.11n capability analysis model based on mobile networking architecture , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[33]  R. A. Rahman,et al.  A-MSDU real time traffic scheduler for IEEE802.11n WLANs , 2012, 2012 IEEE Symposium on Wireless Technology and Applications (ISWTA).

[34]  Amandeep Kaur,et al.  Performance Optimization of DCF-MAC Standard Using Enhanced RTS Threshold under Impact of IEEE 802.11n WLAN , 2015, 2015 Fifth International Conference on Advanced Computing & Communication Technologies.

[35]  Asuman Yavanoglu,et al.  On the capacity analysis of IEEE802.11n MIMO-OFDM WLAN systems using sub-optimal mimo detectors and compact space-multimode antenna arrays , 2011, 2011 3rd International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).

[36]  Jaume Barceló,et al.  Performance analysis of IEEE 802.11ac wireless backhaul networks in saturated conditions , 2013, EURASIP J. Wirel. Commun. Netw..

[37]  Yuanyuan Yang,et al.  Distributed Algorithms for Joint Routing and Frame Aggregation in 802.11n Wireless Mesh Networks , 2013, 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.

[38]  Samiran Chattopadhyay,et al.  Channel Access Fairness in IEEE 802.11ac: A Retrospective Analysis and Protocol Enhancement , 2016, MobiWac.

[39]  Chih-Yu Wang,et al.  IEEE 802.11n MAC Enhancement and Performance Evaluation , 2009, Mob. Networks Appl..

[40]  Yang Xiao Packing mechanisms for the IEEE 802.11n wireless LANs , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[41]  Zhiliang Qiu,et al.  Enhanced Two-Level Frame Aggregation with Optimized Aggregation Level for IEEE 802.11n WLANs , 2015, IEEE Communications Letters.

[42]  Janis Jansons,et al.  ANALYZING THE BASIC PERFORMANCE OF IEEE802.11G/N , 2012 .

[43]  Miguel Garcia,et al.  IEEE 802.11n MAC Mechanisms for High Throughput: a Performance Evaluation , 2011, ICNS 2011.

[44]  Femi-Jemilohun Oladunni .Juliet,et al.  Investigation of Beam Forming Effectiveness in Ieee802.11AC Indoor Wireless Links , 2013 .

[45]  T Selvam,et al.  A frame aggregation scheduler for IEEE 802.11n , 2010, 2010 National Conference On Communications (NCC).

[46]  Nobuo Funabiki,et al.  A Modified Active Access-Point Selection Algorithm Considering Link Speed Change in IEEE 802.11n for Wireless Mesh Networks , 2013, 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems.

[47]  Rung-Shiang Cheng,et al.  Performance evaluation of stream control transport protocol over IEEE 802.11ac networks , 2015, 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).

[48]  Michelle X. Gong,et al.  Channel Bounding and MAC Protection Mechanisms for 802.11ac , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[49]  Samiran Chattopadhyay,et al.  Dynamic Link Adaptation in IEEE 802.11ac: A Distributed Learning Based Approach , 2016, 2016 IEEE 41st Conference on Local Computer Networks (LCN).

[50]  Issam Jabri,et al.  On the performance of IEEE 802.11n protocol , 2012, 2012 5th Joint IFIP Wireless and Mobile Networking Conference (WMNC).

[51]  Sean Lawrence,et al.  A comparative analysis of VoIP support for HT transmission mechanisms in WLAN , 2007, 27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07).

[52]  Jihoon Kim,et al.  WiZizz: Energy efficient bandwidth management in IEEE 802.11ac wireless networks , 2015, 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).

[53]  Hyung-Do Choi,et al.  Performance comparison of cooperative downlink transmission schemes in IEEE 802.11ac: Interference alignment vs. MU-MIMO with TDMA , 2014, 2014 International Conference on Information and Communication Technology Convergence (ICTC).

[54]  Nobuo Funabiki,et al.  An Extension of Routing Tree Algorithm Considering Link Speed Change in IEEE 802.11n Protocol for Wireless Mesh Network , 2012, 2012 9th International Conference on Ubiquitous Intelligence and Computing and 9th International Conference on Autonomic and Trusted Computing.

[55]  Guillem Femenias,et al.  Adaptive Uniform Channel Decomposition in MU-MIMO-OFDM: Application to IEEE 802.11ac , 2015, IEEE Transactions on Wireless Communications.

[56]  Zawar Shah,et al.  Throughput comparison of IEEE 802.11ac and IEEE 802.11n in an indoor environment with interference , 2015, 2015 International Telecommunication Networks and Applications Conference (ITNAC).

[57]  Kevin C. Almeroth,et al.  The impact of channel bonding on 802.11n network management , 2011, CoNEXT '11.

[58]  Thierry Turletti,et al.  On selecting the best transmission mode for WiFi devices , 2009, Wirel. Commun. Mob. Comput..

[59]  Xinbing Wang,et al.  An Energy Efficiency Perspective on Rate Adaptation for 802.11n NIC , 2016, IEEE Transactions on Mobile Computing.

[60]  Kai-Ten Feng,et al.  Frame-Aggregated Link Adaptation Protocol for Next Generation Wireless Local Area Networks , 2010, EURASIP J. Wirel. Commun. Netw..

[61]  V. K. Jones,et al.  The 802.11n MIMO-OFDM Standard for Wireless LAN and Beyond , 2006, Wirel. Pers. Commun..

[62]  Martin Maier,et al.  Hierarchical frame aggregation techniques for hybrid fiber-wireless access networks , 2011, IEEE Communications Magazine.

[63]  Ivan Dolnak,et al.  Multicast transmission issues in wireless networks based on IEEE 802.11 standards , 2015, 2015 13th International Conference on Emerging eLearning Technologies and Applications (ICETA).

[64]  Arturo Azcorra,et al.  Revisiting 802.11 Rate Adaptation from Energy Consumption's Perspective , 2016, MSWiM.

[65]  Kuang-Hao Lin,et al.  Implementation of channel estimation for MIMO-OFDM systems , 2010, 2010 International SoC Design Conference.

[66]  Yang Xiao,et al.  IEEE 802.11n: enhancements for higher throughput in wireless LANs , 2005, IEEE Wireless Communications.

[67]  Eldad Perahia,et al.  Gigabit wireless LANs: an overview of IEEE 802.11ac and 802.11ad , 2011, MOCO.

[68]  Li Taoshen,et al.  EEFA: Energy efciency frame aggregation scheduling algorithm for IEEE 802.11n wireless network , 2014, China Communications.

[69]  John C. Bicket,et al.  Bit-rate selection in wireless networks , 2005 .

[70]  Heng Siong Lim,et al.  Throughput analysis of IEEE802.11n using OPNET , 2012, ICWCA.

[71]  Mojtaba Aajami,et al.  Optimal TXOP Sharing in IEEE 802.11ac , 2015, IEEE Communications Letters.

[72]  Shoba Krishnan,et al.  FRAME AGGREGATION MECHANISM FOR HIGH - THROUGHPUT 802.11 N WLANS , 2012 .

[73]  Antonio Pascual-Iserte,et al.  Energy-aware broadcast MU-MIMO precoder design with imperfect battery knowledge , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[74]  Mahesh K. Marina,et al.  SampleLite: A Hybrid Approach to 802.11n Link Adaptation , 2015, CCRV.

[75]  I-Tai Lu,et al.  Efficient channel access scheme for multiuser parallel transmission under channel bonding in IEEE 802.11ac , 2015, IET Commun..

[76]  Dimitrios Koutsonikolas,et al.  Power-throughput tradeoffs of 802.11n/ac in smartphones , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[77]  Thomas Olwal,et al.  Analysis of IEEE 802.11n network Access Categories in EDCA non-saturated networks , 2015, 2015 International Conference on Computing, Communication and Security (ICCCS).

[78]  Leandros Tassiulas,et al.  Multicast Transmission over IEEE 802.11n WLAN , 2008, 2008 IEEE International Conference on Communications.

[79]  Haifang Jian,et al.  A Novel Channel Sensing Method for IEEE802.11n MIMO System , 2012 .

[80]  Serge Fdida,et al.  Dynamic packet aggregation to solve performance anomaly in 802.11 wireless networks , 2006, MSWiM '06.

[81]  Mathias Kretschmer,et al.  Exploiting IEEE802.11n MIMO Technology for Cost-Effective Broadband Back-Hauling , 2013, AFRICOMM.

[82]  Xinbing Wang,et al.  Latency-aware rate adaptation in 802.11n home networks , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[83]  A. Yavano Spectral and power efficiency of IEEE802.11n MIMO-OFDM WLAN systems using space-multimode-polarization diversity compact stacked circular microstrip antenna arrays , 2011 .

[84]  Lotfi Kamoun,et al.  PHY/MAC Enhancements and QoS Mechanisms for Very High Throughput WLANs: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[85]  Kevin C. Almeroth,et al.  Intelligent Channel Bonding in 802.11n WLANs , 2014, IEEE Transactions on Mobile Computing.

[86]  Daniel Camps-Mur,et al.  Leveraging 802.11n frame aggregation to enhance QoS and power consumption in Wi-Fi networks , 2012, Comput. Networks.

[87]  Martin Haardt,et al.  Multi-Branch Tomlinson-Harashima Precoding Design for MU-MIMO Systems: Theory and Algorithms , 2014, IEEE Transactions on Communications.

[88]  Shruti Sanadhya,et al.  On link rate adaptation in 802.11n WLANs , 2011, 2011 Proceedings IEEE INFOCOM.

[89]  Zheng Chang,et al.  IEEE 802.11ac: Enhancements for very high throughput WLANs , 2011, 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications.

[90]  Edward W. Knightly,et al.  IEEE 802.11ac: from channelization to multi-user MIMO , 2013, IEEE Communications Magazine.

[91]  Monthippa Uthansakul,et al.  Data rate and throughput enhancement base on IEEE802.11n standard employing multiple antenna elements , 2014, 2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).

[92]  Sandip Chakraborty,et al.  Alleviating Hidden and Exposed Nodes in High-Throughput Wireless Mesh Networks , 2016, IEEE Transactions on Wireless Communications.

[93]  Minyoung Park,et al.  IEEE 802.11ac: Dynamic Bandwidth Channel Access , 2011, 2011 IEEE International Conference on Communications (ICC).

[94]  Tomoya Tandai,et al.  A MAC proposal to IEEE802.11n high‐throughput WLAN for 20/40 MHz coexistence , 2007 .

[95]  Christoph Lindemann,et al.  Analyzing the effective throughput in multi-hop IEEE 802.11n networks , 2011, Comput. Commun..

[96]  Michele Luvisotto,et al.  Improved Rate Adaptation strategies for real-time industrial IEEE 802.11n WLANs , 2015, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA).

[97]  Guillem Femenias,et al.  A fair MU-MIMO scheme for IEEE 802.11ac , 2012, 2012 International Symposium on Wireless Communication Systems (ISWCS).

[98]  Nobuo Funabiki,et al.  A modified routing tree algorithm considering link speed change in IEEE 802.11n for wireless mesh network , 2013, 2013 IEEE International Symposium on Consumer Electronics (ISCE).

[99]  Shaoen Wu,et al.  Rate adaptation algorithms for IEEE 802.11 networks: A survey and comparison , 2008, 2008 IEEE Symposium on Computers and Communications.

[100]  Waqar Mahmood,et al.  IEEE802.11n Time Synchronization for MIMO OFDM WLAN , 2013 .

[101]  W. Henkel,et al.  Multiuser MIMO-OFDMA with Different QoS Using a Prioritized Channel Adaptive Technique , 2009, 2009 IEEE International Conference on Communications Workshops.

[102]  Tim Brecht,et al.  Examining Relationships Between 802.11n Physical Layer Transmission Feature Combinations , 2016, MSWiM.

[103]  Qiang Fu,et al.  Evaluation of the Minstrel rate adaptation algorithm in IEEE 802.11g WLANs , 2013, 2013 IEEE International Conference on Communications (ICC).

[104]  Ali M. Alsahlany,et al.  Multipacket reception for multiple antenna systems in IEEE802.11n-over-fiber network , 2011, 2011 19thTelecommunications Forum (TELFOR) Proceedings of Papers.

[105]  Mazlan Abbas,et al.  Design and Performance Analysis of Multiradio Multihop Network Using IEEE802.11n 2.4GHz Access and 5.8GHz Backhaul Radios , 2011 .

[106]  Sandip Chakraborty,et al.  ES2: Managing link level parameters for elevating data rate and stability in High Throughput WLAN , 2016, 2016 8th International Conference on Communication Systems and Networks (COMSNETS).

[107]  Teruo Higashino,et al.  An extension of clustering algorithm for considering link speed in wireless mesh networks , 2013, 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE).

[108]  Kyu-Han Kim,et al.  Practical MU-MIMO user selection on 802.11ac commodity networks , 2016, MobiCom.

[109]  Ying Chen,et al.  Multiband-OFDM UWB vs IEEE802.11n: System Level Design Considerations , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[110]  Michael Barton,et al.  Link Adaptation Algorithm for the IEEE 802.11n MIMO System , 2008, Networking.

[111]  Yuanyuan Yang,et al.  AP association in 802.11n WLANs with heterogeneous clients , 2012, 2012 Proceedings IEEE INFOCOM.

[112]  Konstantinos Pelechrinis,et al.  Experimental characterization of 802.11n link quality at high rates , 2010, WiNTECH '10.

[113]  Parth H. Pathak,et al.  A first look at 802.11ac in action: Energy efficiency and interference characterization , 2014, 2014 IFIP Networking Conference.

[114]  Kae Hsiang Kwong,et al.  Capacity and coverage analysis of rural multi-radio multi-hop network deployment using IEEE802.11n radios , 2011, 2011 IEEE 10th Malaysia International Conference on Communications.

[115]  Samiran Chattopadhyay,et al.  Dynamic link adaptation for High Throughput wireless access networks , 2015, 2015 IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS).

[116]  Xi Chen,et al.  RAM: Rate Adaptation in Mobile Environments , 2012, IEEE Transactions on Mobile Computing.

[117]  Mohamed Othman,et al.  Two-Level Frames Aggregation with Enhanced A-MSDU for IEEE 802.11n WLANs , 2015, Wirel. Pers. Commun..

[118]  Subramaniam Shamala,et al.  An Optimized A-MSDU Frame Aggregation with Subframe Retransmission in IEEE 802.11n Wireless Networks , 2012, ICCS.

[119]  Sung-Ju Lee,et al.  Mode and user selection for multi-user MIMO WLANs without CSI , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[120]  Chris Blondia,et al.  Multimedia multicast performance analysis for 802.11n network cards , 2012, 2012 IFIP Wireless Days.

[121]  Samiran Chattopadhyay,et al.  Performance modeling and analysis of high throughput wireless media access with QoS in noisy channel for different traffic conditions , 2016, 2016 8th International Conference on Communication Systems and Networks (COMSNETS).

[122]  Weizhi Ma,et al.  Performance test of IEEE 802.11ac wireless devices , 2015, 2015 International Conference on Computer Communication and Informatics (ICCCI).

[123]  M. Muck,et al.  Reconfigurable Low Density Parity Check (LDPC) Code Interleaving for SIO and MIMO OFDM Systems , 2006, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.

[124]  Takeo Yoshida,et al.  RTL design of LDPC decoder for IEEE802.11n WLAN , 2009, 2009 9th International Symposium on Communications and Information Technology.

[125]  Sandip Chakraborty,et al.  Controlling Unfairness due to Physical Layer Capture and Channel Bonding in 802.11n+s Wireless Mesh Networks , 2015, ICDCN.

[126]  Adlen Ksentini,et al.  Performance Analysis of the TXOP Sharing Mechanism in the VHT IEEE 802.11ac WLANs , 2014, IEEE Communications Letters.

[127]  Jaume Barceló,et al.  On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs , 2012, IEEE Communications Letters.

[128]  Mojtaba Aajami,et al.  Utility Max-Min Fair Link Adaptation in IEEE 802.11ac Downlink Multi-User , 2014, IEEE Communications Letters.

[129]  Guillem Femenias,et al.  GMD-enhanced MU-MIMO for IEEE 802.11ac , 2013, 2013 IFIP Wireless Days (WD).

[130]  Sandip Chakraborty,et al.  Evaluating transport protocol performance over a wireless mesh backbone , 2014, Perform. Evaluation.