Solute strengthening in random alloys

Abstract Random solid solution alloys are a broad class of materials that are used across the entire spectrum of engineering metals, whether as stand-alone materials (e.g. Al-5xxx alloys) or as the matrix in precipitate-strengthening materials (e.g. Ni-based superalloys). As a result, the mechanisms of, and prediction of, strengthening in solid solutions has a long history. Many concepts have been developed and important trends identified but predictive capability has remained elusive. In recent years, a new theory has been developed that builds on one historical model, the Labusch model, in important ways that lead to a well-defined model valid for random solutions with arbitrary numbers of components and compositions. The new theory uses first-principles-computed solute/dislocation interaction energies as input, from which specific predictions emerge for the yield strength and activation volume as a function of alloy composition, temperature, and strain-rate. Being a general model for materials that otherwise have a low Peierls stress, it has broad application and has been successfully applied to Al-X alloys, Mg-Al, twinning in Mg alloys, and recently fcc High-Entropy Alloys. Here, the new theory is presented in a general and systematic manner. Approximations and limiting cases that reduce the complexity and facilitate understanding are introduced, and help relate the new model to various physical features present among the historical array of models, other recent models, and simulation studies. The quantitative predictions of the model in the various materials above is then demonstrated.

[1]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  D. Skuse Recovery , 2010, International psychiatry : bulletin of the Board of International Affairs of the Royal College of Psychiatrists.

[3]  A. Argon SOLID-SOLUTION STRENGTHENING , 2007 .

[4]  P. Kratochvíl,et al.  Solid solution hardening in some copper base alloys , 1971 .

[5]  N. Chaari Modélisation ab initio de la plasticité dans les métaux hexagonaux : zirconium et titane purs et effet de l’oxygène , 2015 .

[6]  L. Hector,et al.  Quantitative prediction of solute strengthening in aluminium alloys. , 2010, Nature materials.

[7]  G. Pharr,et al.  Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures , 2014 .

[8]  C. Woodward,et al.  Flexible Ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. , 2002, Physical review letters.

[9]  W. Curtin,et al.  Average-atom interatomic potential for random alloys , 2016 .

[10]  J. C. Bailey,et al.  4.1 – Aluminium and Aluminium Alloys , 1994 .

[11]  D. Rodney,et al.  Dislocation core reconstruction induced by carbon segregation in bcc iron , 2015 .

[12]  L. Proville,et al.  Hydrogen and vacancy clustering in zirconium , 2015, 1504.02720.

[13]  M. Barnett,et al.  Estimating Critical Stresses Required for Twin Growth in a Magnesium Alloy , 2013, Metallurgical and Materials Transactions A.

[14]  E. Teghtsoonian,et al.  Substitutional solution hardening of magnesium single crystals , 1972 .

[15]  Shinhoo Kang,et al.  Mechanical properties of rapidly solidified modified cupro-nickel alloys , 1986 .

[16]  D. Hull,et al.  Introduction to Dislocations , 1968 .

[17]  L. Hector,et al.  Solute strengthening of twinning dislocations in Mg alloys , 2014 .

[18]  K. P. Gupta,et al.  Low temperature lattice parameter of nickel and some nickel-cobalt alloys and Grüneisen parameter of nickel , 1977 .

[19]  Engineering,et al.  First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties , 2010, 1007.2585.

[20]  P. Haasen,et al.  Solid solution hardening of gold and other f.c.c. single crystals , 1970 .

[21]  S. TOLANSKY,et al.  Dislocations , 1966, Nature.

[22]  A. Argon Thermally assisted motion of dislocations in solid solution-strengthened fcc alloys and the concept of “stress equivalence” , 2004 .

[23]  W. Curtin,et al.  Solute strengthening at high temperatures , 2016 .

[24]  William A. Curtin,et al.  Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy , 2016 .

[25]  F. Willaime,et al.  Dislocation core field.II. Screw dislocation in iron , 2011, 1112.4936.

[26]  A. Dick,et al.  First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys , 2011 .

[27]  F. Nabarro Thermally activated dislocation glide in moderately concentrated solid solutions , 1985 .

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  Y. Bréchet,et al.  Atomic-scale study of dislocation glide in a model solid solution , 2006 .

[30]  Vasily V. Bulatov,et al.  Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .

[31]  F. Nabarro The statistical problem of hardening , 1972 .

[32]  E. Parker,et al.  THE GROWTH OF PRISMATIC DISLOCATION LOOPS DURING ANNEALING. Technical Report No. 20 , 1960 .

[33]  R. Fleischer,et al.  Substitutional solution hardening , 1963 .

[34]  Michael D. Uchic,et al.  Exploration and Development of High Entropy Alloys for Structural Applications , 2014, Entropy.

[35]  S. Chudinov,et al.  Electronic structure of metals , 1975 .

[36]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[37]  L. Hector,et al.  Prediction of dislocation cores in aluminum from density functional theory. , 2008, Physical review letters.

[38]  R. Sandström,et al.  One parameter model for strength properties of hardenable aluminium alloys , 2008 .

[39]  N. Mott CXVII. A theory of work-hardening of metal crystals , 1952 .

[40]  L. Hector,et al.  Solute strengthening from first principles and application to aluminum alloys , 2012 .

[41]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[42]  J. C. Fisher On the strength of solid solution alloys , 1954 .

[43]  C. Sinclair,et al.  Dislocation glide through non-randomly distributed point obstacles , 2013 .

[44]  Was,et al.  Application of molecular dynamics to the study of hydrogen embrittlement in Ni-Cr-Fe alloys. , 1989, Physical review. B, Condensed matter.

[45]  Y. Kawazoe,et al.  First-principles study of solute-dislocation interaction in aluminum-rich alloys , 2001 .

[46]  Douglas L. Irving,et al.  Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy , 2013 .

[47]  P. Feltham,et al.  Solid-solution hardening , 1978 .

[48]  Michael F. McGuire,et al.  Stainless Steels for Design Engineers , 2008 .

[49]  M. Jouiad,et al.  Dynamic friction stresses in the γ phase of a nickel-based superalloy , 1999 .

[50]  F. Willaime,et al.  Dislocation core energies and core fields from first principles. , 2009, Physical review letters.

[51]  E. George,et al.  Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy , 2016 .

[52]  R. Labusch Cooperative effects in alloy hardening , 1988 .

[53]  William A. Curtin,et al.  Multiscale quantum/atomistic coupling using constrained density functional theory , 2013 .

[54]  Huseyin Sehitoglu,et al.  Quantitative prediction of twinning stress in fcc alloys: Application to Cu-Al , 2009 .

[55]  B. Diak,et al.  Characterization of thermodynamic response by materials testing , 1998 .

[56]  P. Rivera-Díaz-del-Castillo,et al.  Modelling and Design of Magnesium and High Entropy Alloys Through Combining Statistical and Physical Models , 2015 .

[57]  M. Zaiser Dislocation motion in a random solid solution , 2002 .

[58]  William A. Curtin,et al.  Theory of strengthening in fcc high entropy alloys , 2016 .

[59]  W. Li,et al.  Elastic properties of vanadium-based alloys from first-principles theory , 2012 .

[60]  M. Ghazisaeidi,et al.  Analysis of dissociation of 〈c〉 and 〈c + a〉 dislocations to nucleate twins in Mg , 2013 .

[61]  B. Uberuaga,et al.  The interaction of a screw dislocation with point defects in bcc iron , 2012 .

[62]  L. Proville,et al.  Dislocation pinning by substitutional impurities in an atomic-scale model for Al(Mg) solid solutions , 2011 .

[63]  T. Tsuru,et al.  Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective , 2015, Scientific Reports.

[64]  M. Barnett,et al.  Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn , 2004 .

[65]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[66]  E. Clouet The vacancy - edge dislocation interaction in fcc metals: a comparison between atomic simulations and elasticity theory , 2006, cond-mat/0607194.

[67]  C. Koch,et al.  Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo , 2015 .

[68]  P. Haasen CHAPTER 23 – MECHANICAL PROPERTIES OF SOLID SOLUTIONS , 1996 .

[69]  George M. Pharr,et al.  Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys , 2014 .

[70]  L. Proville,et al.  Depinning transition for a screw dislocation in a model solid solution , 2008, 0811.0239.

[71]  Jianqing Jiang,et al.  Effect of annealing on microstructure and properties of Cu–30Ni alloy tube , 2009 .

[72]  Andrew M. Minor,et al.  Origin of dramatic oxygen solute strengthening effect in titanium , 2015, Science.

[73]  D. Rodney,et al.  Finite-size effects in dislocation glide through random arrays of obstacles: Line tension simulations , 2006 .

[74]  J. E. Dorn,et al.  Rate processes in plastic deformation of materials : proceedings from the John E. Dorn Symposium , 1975 .

[75]  C. Schwink,et al.  Quantitative analysis of solution hardening in selected copper alloys , 1987 .

[76]  L. Proville,et al.  Atomic-scale models for hardening in fcc solid solutions , 2010 .

[77]  D. Yin,et al.  On tension–compression yield asymmetry in an extruded Mg–3Al–1Zn alloy , 2009 .

[78]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[79]  D. Raabe,et al.  Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation , 2015 .

[80]  P. Lukáč,et al.  On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression , 2007 .

[81]  L. Hector,et al.  Molecular dynamics study of solute strengthening in Al/Mg alloys , 2006 .

[82]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[83]  William A. Curtin,et al.  First-principles prediction of yield stress for basal slip in Mg-Al alloys , 2012 .

[84]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[85]  R. Newman,et al.  The kinetics of migration of point defects to dislocations , 1970 .

[86]  K. Marukawa A new model of solution hardening in fcc metals based on the interaction with plural obstacles , 2007 .

[87]  R. M. Broudy,et al.  Dislocations and Mechanical Properties of Crystals. , 1958 .

[88]  B. Diak,et al.  The determination of solute clusters in dilute aluminum alloys using strain rate sensitivity , 1997 .

[89]  R. Pascual,et al.  Stress equivalence of solution hardening , 1972 .

[90]  M. Ghazisaeidi,et al.  Interaction of oxygen interstitials with lattice faults in Ti , 2014, 1403.2806.

[91]  M. Jouiad,et al.  Local disordering and reordering phenomena induced by mobile dislocations in short-range-ordered solid solutions , 2002 .

[92]  Joseph R. Davis,et al.  Special Features of Structure Formation and Properties of Special High-Alloy Alloys of the Al – Si – Cu System , 2023, Metal Science and Heat Treatment.

[93]  D. Rodney,et al.  Prediction of the kink-pair formation enthalpy on screw dislocations in α-iron by a line tension model parametrized on empirical potentials and first-principles calculations , 2013 .

[94]  W. Curtin,et al.  Friedel vs. Labusch: the strong/weak pinning transition in solute strengthened metals , 2013 .

[95]  G. Bonny,et al.  Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy , 2011 .

[96]  D. Rodney,et al.  Ab initio modeling of dislocation core properties in metals and semiconductors , 2017 .

[97]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[98]  M. Barnett,et al.  Solute strengthening of prismatic slip, basal slip and {1 0 1 2} twinning in Mg and Mg-Zn binary alloys , 2013 .

[99]  N. Mott,et al.  Dislocation theory and transient creep , 1948 .

[100]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[101]  Johnson,et al.  Density-functional theory for random alloys: Total energy within the coherent-potential approximation. , 1986, Physical review letters.

[102]  J. B. Adams,et al.  Modelling and Simulation in Materials Science and Engineering EAM potential for magnesium from quantum mechanical forces , 1996 .

[103]  Vasily Bulatov,et al.  Computer Simulations of Dislocations (Oxford Series on Materials Modelling) , 2006 .

[104]  W. Curtin,et al.  Robust atomistic calculation of dislocation line tension , 2015 .

[105]  Yanfei Gao,et al.  Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys , 2016 .

[106]  A. Argon,et al.  Strengthening Mechanisms in Crystal Plasticity , 2007 .

[107]  R. Labusch,et al.  Statistische theorien der mischkristallhärtung , 1972 .

[108]  L. Nordheim Zur Elektronentheorie der Metalle. II , 1931 .

[109]  M. Falk,et al.  Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships , 2016 .

[110]  E. Holmström,et al.  Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy , 2015 .

[111]  Binglun Yin,et al.  Softening and hardening of yield stress by hydrogen–solute interactions , 2017 .

[112]  M. Asta,et al.  Energetics of homogeneously-random fcc Al-Ag alloys: A detailed comparison of computational methods , 1997 .

[113]  Martin Friák,et al.  Generation and performance of special quasirandom structures for studying the elastic properties of random alloys: Application to Al-Ti , 2010 .

[114]  P. Rivera-Díaz-del-Castillo,et al.  Modelling solid solution hardening in high entropy alloys , 2015 .

[115]  M. Qi,et al.  Grain size and texture effect on compression behavior of hot-extruded Mg–3Al–1Zn alloys at room temperature , 2009 .

[116]  C. Woodward,et al.  The Chemistry of Deformation: How Solutes Soften Pure Metals , 2005, Science.

[117]  R. Labusch A Statistical Theory of Solid Solution Hardening , 1970 .

[118]  M. Marinica,et al.  Quantum effect on thermally activated glide of dislocations. , 2012, Nature materials.

[119]  C. Becquart,et al.  Dislocation interaction with C in α-Fe: A comparison between atomic simulations and elasticity theory , 2008, 0809.1520.

[120]  P. Leath,et al.  The theory and properties of randomly disordered crystals and related physical systems , 1974 .

[121]  R. Sandström,et al.  Modelling mechanical properties for non-hardenable aluminium alloys , 2007 .