A Low Complexity Algorithm for Non-Monotonically Evolving Fronts

A new algorithm is proposed to describe the propagation of fronts advected in the normal direction with prescribed speed function F. The assumptions on F are that it does not depend on the front itself, but can depend on space and time. Moreover, it can vanish and change sign. The novelty of our method is that its overall computational complexity is predicted to be comparable to that of the Fast Marching Method (Sethian in Proceedings of the National Academy Sciences 93:1591–1595, 1996); (Vladimirsky in Interfaces Free Bound 8(3):281–300, 2006) in most instances. This latter algorithm is $$\mathcal {O}(N^{n}\log N^{n})$$O(NnlogNn) if the computational domain comprises $$N^{n}$$Nn points. We use it in regions where the speed is bounded away from zero—and switch to a different formalism when $$F \approx 0$$F≈0. To this end, a collection of so-called sideways partial differential equations is introduced. Their solutions locally describe the evolving front and depend on both space and time. The well-posedness and geometric properties of those equations are addressed. We then propose a convergent and stable discretization of the PDEs. The resulting algorithm is presented together with a thorough discussion of its features. The accuracy of the scheme is tested when F depends on both space and time. Each example yields an $$\mathcal {O}(1/N)$$O(1/N) global truncation error. We conclude with a discussion of the advantages and limitations of our method.

[1]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[2]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[3]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[4]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[5]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .

[7]  Maurizio Falcone,et al.  Convergence of a Generalized Fast-Marching Method for an Eikonal Equation with a Velocity-Changing Sign , 2008, SIAM J. Numer. Anal..

[8]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[9]  P. Souganidis Existence of viscosity solutions of Hamilton-Jacobi equations , 1985 .

[10]  小池 茂昭,et al.  A beginner's guide to the theory of viscosity solutions , 2004 .

[11]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[12]  Stanley Osher,et al.  Geometric Optics in a Phase-Space-Based Level Set and Eulerian Framework , 2002 .

[13]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[14]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[15]  James A. Sethian,et al.  Numerical Methods for Propagating Fronts , 1987 .

[16]  Maurizio Falcone The minimum time problem and its applications to front propagation , 1994 .

[17]  P. Smereka,et al.  A Remark on Computing Distance Functions , 2000 .

[18]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[19]  L. Evans,et al.  Motion of level sets by mean curvature IV , 1995 .

[20]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[22]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[23]  J. Tsitsiklis Efficient algorithms for globally optimal trajectories , 1995, IEEE Trans. Autom. Control..

[24]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[25]  Christian Gout,et al.  Generalized fast marching method: applications to image segmentation , 2008, Numerical Algorithms.

[26]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[27]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[28]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[29]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[30]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[31]  Ronald Fedkiw,et al.  A Level Set Approach for the Numerical Simulation of Dendritic Growth , 2003, J. Sci. Comput..

[32]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[33]  J. Sethian,et al.  Crystal growth and dendritic solidification , 1992 .

[34]  P. Souganidis Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .

[35]  James A. Sethian,et al.  A Level Set Approach to a Unified Model for Etching, Deposition, and Lithography I: Algorithms and T , 1995 .

[36]  Pierre F. J. Lermusiaux,et al.  Path planning in time dependent flow fields using level set methods , 2012, 2012 IEEE International Conference on Robotics and Automation.

[37]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[38]  M. Crandall,et al.  Some relations between nonexpansive and order preserving mappings , 1980 .

[39]  P. Lions,et al.  Shape-from-shading, viscosity solutions and edges , 1993 .

[40]  G. Barles Existence results for first order Hamilton Jacobi equations , 1984 .

[41]  P. Ronney,et al.  Simulation of front propagation at large non-dimensional flow disturbance intensities , 1994 .

[42]  Elisabetta Carlini,et al.  A Non-Monotone Fast Marching Scheme for a Hamilton-Jacobi Equation Modelling Dislocation Dynamics , 2006 .

[43]  David L. Chopp,et al.  Another Look at Velocity Extensions in the Level Set Method , 2009, SIAM J. Sci. Comput..

[44]  Baba C. Vemuri,et al.  A fast level set based algorithm for topology-independent shape modeling , 1996, Journal of Mathematical Imaging and Vision.

[45]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[46]  J. Sethian,et al.  A level set approach to a unified model for etching, deposition, and lithography II: three-dimensional simulations , 1995 .

[47]  Li-Tien Cheng,et al.  Redistancing by flow of time dependent eikonal equation , 2008, J. Comput. Phys..

[48]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[49]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[50]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[51]  Dynamic Programming Algorithms for Planning and Robotics in Continuous Domains and the Hamilton-Jacobi Equation , 2008 .

[52]  J. Sethian,et al.  Ordered upwind methods for static Hamilton–Jacobi equations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Andrei I. Subbotin,et al.  Generalized solutions of first-order PDEs - the dynamical optimization perspective , 1994, Systems and control.

[54]  Ryo Takei,et al.  Optimal Trajectories of Curvature Constrained Motion in the Hamilton–Jacobi Formulation , 2013, J. Sci. Comput..

[55]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .

[56]  L. Evans,et al.  Motion of level sets by mean curvature III , 1992 .

[57]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[58]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[59]  David L. Chopp,et al.  Some Improvements of the Fast Marching Method , 2001, SIAM J. Sci. Comput..

[60]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[61]  A. V. Ladimirsky Static PDEs for time-dependent control problems , 2004 .

[62]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[63]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..