Towards a Generic Model for MU-MIMO Analysis Including Mutual Coupling and Multipath Effects

A network model which accounts for antenna mutual coupling and multipath effects in a wireless channel is proposed as a tool to qualitatively evaluate the performance of a multi-user multiple-input multiple-output (MU-MIMO) system. The system performance is assessed when a zero-forcing (ZF) beamformed conventional uniform linear array (ULA) and a sparse array are employed as one sector of a base station antenna (BSA) in a single-cell network. It is shown that highly correlated user equipments (UEs) in a line-of-sight (LOS) scenario can be decorrelated to some extents, by a scattering environment in a non-line-of-sight (NLOS) scenario. This occurs due to increase of the spatial variation by a multipath effect. Furthermore, in both environments a sparse array realized by an increased interelement spacing is also capable for correlation reduction among users due to the narrower beams.