Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system
暂无分享,去创建一个
[1] Pierre-Louis Lions,et al. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .
[2] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[3] Jeffery Cooper,et al. Boundary value problems for the Vlasov-Maxwell equation in one dimension , 1980 .
[4] Rosa Donat,et al. Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..
[5] P. Raviart. An analysis of particle methods , 1985 .
[6] Pierre Degond,et al. Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data , 1985 .
[7] Michael Griebel,et al. Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..
[8] J. Batt,et al. Global symmetric solutions of the initial value problem of stellar dynamics , 1977 .
[9] A. Harten. Adaptive Multiresolution Schemes for Shock Computations , 1994 .
[10] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[11] Albert Cohen,et al. Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..
[12] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[13] Francis Filbet,et al. An adaptive numerical method for the Vlasov equation based on a multiresolution analysis , 2007, 0704.1595.
[14] E. Sonnendrücker,et al. Numerical Methods for Hyperbolic and Kinetic Problems , 2005 .
[15] Francis Filbet,et al. Vlasov simulations of beams with a moving grid , 2004, Comput. Phys. Commun..
[16] Jean,et al. Développement et analyse de méthodes adaptatives pour les équations de transport , 2005 .
[17] Wolfgang Dahmen. Adaptive approximation by multivariate smooth splines , 1982 .
[18] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .
[19] Harry Yserentant,et al. Hierarchical bases , 1992 .
[20] Jack Schaeffer,et al. Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .
[21] R. Glassey,et al. The Cauchy Problem in Kinetic Theory , 1987 .
[22] Olivier Roussel,et al. A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .
[23] E. Sonnendrücker,et al. Comparison of Eulerian Vlasov solvers , 2003 .
[24] Rolf Stenberg,et al. Numerical Mathematics and Advanced Applications ENUMATH 2017 , 2019, Lecture Notes in Computational Science and Engineering.
[25] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[26] Rosa Donat,et al. Shock-Vortex Interactions at High Mach Numbers , 2003, J. Sci. Comput..
[27] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[28] Nicolas Besse,et al. Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .
[29] Nicolas Besse. Convergence of a Semi-Lagrangian Scheme for the One-Dimensional Vlasov-Poisson System , 2004, SIAM J. Numer. Anal..
[30] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[31] P. G. Ciarlet,et al. Basic error estimates for elliptic problems , 1991 .
[32] A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .
[33] H. Neunzert,et al. On the classical solutions of the initial value problem for the unmodified non-linear vlasov equation II special cases , 1982 .
[34] Nicolas Besse,et al. Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system , 2008, Math. Comput..
[35] Wolfgang Dahmen,et al. On an Adaptive Multigrid Solver for Convection-Dominated Problems , 2001, SIAM J. Sci. Comput..
[36] Francis Filbet,et al. Numerical methods for the Vlasov equation , 2003 .
[37] Endre Süli,et al. Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems , 2001, Math. Comput..
[38] H. Neunzert,et al. On the classical solutions of the initial value problem for the unmodified non‐linear Vlasov equation I general theory , 1981 .
[39] A. A. Arsen’ev,et al. Global existence of a weak solution of vlasov's system of equations , 1975 .
[40] Wolfgang Dahmen,et al. Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.
[41] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[42] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[43] Eric Sonnendrücker,et al. Vlasov simulations on an adaptive phase-space grid , 2004, Comput. Phys. Commun..
[44] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[45] Hans-Joachim Bungartz,et al. Acta Numerica 2004: Sparse grids , 2004 .