Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system

An adaptive semi-Lagrangian scheme for solving the Cauchy problem associated to the periodic 1+1-dimensional Vlasov-Poisson system in the two- dimensional phase space is proposed and analyzed. A key feature of our method is the accurate evolution of the adaptive mesh from one time step to the next one, based on a rigorous analysis of the local regularity and how it gets transported by the numerical flow. The accuracy of the scheme is monitored by a prescribed tolerance parameter ε which represents the local interpolation error at each time step, in the L∞ metric. The numerical solutions are proved to converge in L∞ towards the exact ones as ε and Δt tend to zero provided the initial data is Lipschitz and has a finite total curvature, or in other words, that it belongs to $${W^{1,\infty} \cap W^{2,1}}$$ . The rate of convergence is $${\mathcal{O}({\Delta}t^2 + \varepsilon/{\Delta}t)}$$ , which should be compared to the results of Besse who recently established in (SIAM J Numer Anal 42(1):350–382, 2004) similar rates for a uniform semi-Lagrangian scheme, but requiring that the initial data are in $${{\mathcal C}^2}$$ . Several numerical tests illustrate the effectiveness of our approach for generating the optimal adaptive discretizations.

[1]  Pierre-Louis Lions,et al.  Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system , 1991 .

[2]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[3]  Jeffery Cooper,et al.  Boundary value problems for the Vlasov-Maxwell equation in one dimension , 1980 .

[4]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[5]  P. Raviart An analysis of particle methods , 1985 .

[6]  Pierre Degond,et al.  Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data , 1985 .

[7]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[8]  J. Batt,et al.  Global symmetric solutions of the initial value problem of stellar dynamics , 1977 .

[9]  A. Harten Adaptive Multiresolution Schemes for Shock Computations , 1994 .

[10]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[11]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[12]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[13]  Francis Filbet,et al.  An adaptive numerical method for the Vlasov equation based on a multiresolution analysis , 2007, 0704.1595.

[14]  E. Sonnendrücker,et al.  Numerical Methods for Hyperbolic and Kinetic Problems , 2005 .

[15]  Francis Filbet,et al.  Vlasov simulations of beams with a moving grid , 2004, Comput. Phys. Commun..

[16]  Jean,et al.  Développement et analyse de méthodes adaptatives pour les équations de transport , 2005 .

[17]  Wolfgang Dahmen Adaptive approximation by multivariate smooth splines , 1982 .

[18]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[19]  Harry Yserentant,et al.  Hierarchical bases , 1992 .

[20]  Jack Schaeffer,et al.  Global existence of smooth solutions to the vlasov poisson system in three dimensions , 1991 .

[21]  R. Glassey,et al.  The Cauchy Problem in Kinetic Theory , 1987 .

[22]  Olivier Roussel,et al.  A conservative fully adaptive multiresolution algorithm for parabolic PDEs , 2003 .

[23]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[24]  Rolf Stenberg,et al.  Numerical Mathematics and Advanced Applications ENUMATH 2017 , 2019, Lecture Notes in Computational Science and Engineering.

[25]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[26]  Rosa Donat,et al.  Shock-Vortex Interactions at High Mach Numbers , 2003, J. Sci. Comput..

[27]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[28]  Nicolas Besse,et al.  Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .

[29]  Nicolas Besse Convergence of a Semi-Lagrangian Scheme for the One-Dimensional Vlasov-Poisson System , 2004, SIAM J. Numer. Anal..

[30]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[31]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[32]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[33]  H. Neunzert,et al.  On the classical solutions of the initial value problem for the unmodified non-linear vlasov equation II special cases , 1982 .

[34]  Nicolas Besse,et al.  Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system , 2008, Math. Comput..

[35]  Wolfgang Dahmen,et al.  On an Adaptive Multigrid Solver for Convection-Dominated Problems , 2001, SIAM J. Sci. Comput..

[36]  Francis Filbet,et al.  Numerical methods for the Vlasov equation , 2003 .

[37]  Endre Süli,et al.  Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems , 2001, Math. Comput..

[38]  H. Neunzert,et al.  On the classical solutions of the initial value problem for the unmodified non‐linear Vlasov equation I general theory , 1981 .

[39]  A. A. Arsen’ev,et al.  Global existence of a weak solution of vlasov's system of equations , 1975 .

[40]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.

[41]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[42]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[43]  Eric Sonnendrücker,et al.  Vlasov simulations on an adaptive phase-space grid , 2004, Comput. Phys. Commun..

[44]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[45]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .