Trinuclear and Cyclometallated Organometallic Dinuclear Pt-Pyrazolato Complexes: A Combined Experimental and Theoretical Study

Two differently substituted pyrazole ligands have been investigated with regard to the topology of their Pt complexes: upon deprotonation, two mononuclear 1:2 PtII-pyrazole complexes—one of the sterically unhindered 4-Me-pzH and one of the bulky 3,5-tBu-pzH (pzH = pyrazole)—yield the corresponding 1:2 PtII-pyrazolato species; the former a triangular, trinuclear metallacycle (1), and the latter a dinuclear, half-lantern species (2) formed via the unprecedented cyclometallation of a butyl group. Stoichiometric oxidation of the colorless PtII2 complex produces the deep-blue, metal–metal bonded PtIII2 analog (3) with a rarely encountered unsymmetrical coordination across the Pt-Pt bond. All three complexes have been characterized by single crystal X-ray structure determination, 1H-NMR, IR, and UV-vis-NIR spectroscopic methods. The XPS spectra of the PtII2 and PtIII2 species are also reported. Density functional theory calculations were carried out to investigate the electronic structure, spectroscopic properties, and chemical bonding of the new complexes. The calculated natural population analysis charges and Wiberg bonding indices indicate a weak σ-interaction in the case of 2 and a formal Pt-Pt single bond in 3.

[1]  K. Umakoshi,et al.  Recent advances in pyrazolato-bridged homo- and heterometallic polynuclear platinum and palladium complexes , 2023, Coordination Chemistry Reviews.

[2]  Yiming Yang,et al.  Rational Synthesis of An Unsymmetric Pt Complex Unit Having Two Kinds of Pyrazolate Ligands, Elucidating Steric and Electronic Effects of Pyrazolate Ligands in Pt–Ag Sandwich Complexes , 2022, European Journal of Inorganic Chemistry.

[3]  D. Escudero,et al.  High-Valent Pyrazolate-Bridged Platinum Complexes: A Joint Experimental and Theoretical Study , 2022, Inorganic chemistry.

[4]  T. Lam,et al.  Exceedingly Stable Luminescent Dinuclear Pt(II) Complexes with Ditopic Formamidinate Bridging Ligands for High‐Performance Red and Deep‐Red OLEDs with LT97 up to 2446 h at 1000 cd m−2 , 2022, Advanced Optical Materials.

[5]  D. Hwang,et al.  Dinuclear Pt(II) Complexes with Red and NIR Emission Governed by Ligand Control of the Intramolecular Pt-Pt Distance. , 2022, Inorganic chemistry.

[6]  F. Castellano,et al.  Metal–Metal-to-Ligand Charge Transfer in Pt(II) Dimers Bridged by Pyridyl and Quinoline Thiols , 2021, Inorganic Chemistry.

[7]  G. Clever,et al.  Multinuclear Ag Clusters Sandwiched by Pt Complex Units: Fluxional Behavior and Chiral-at-Cluster Photoluminescence. , 2021, Angewandte Chemie.

[8]  N. Margiotta,et al.  Platinum(IV) Complexes of trans-1,2-diamino-4-cyclohexene: Prodrugs Affording an Oxaliplatin Analogue that Overcomes Cancer Resistance , 2020, International journal of molecular sciences.

[9]  R. Galassi,et al.  Homoleptic Cyclic Trinuclear d10 Complexes: from Self-Association via Metallophilic and Excimeric Bonding to the Breakage Thereof via Oxidative Addition, Dative Bonding, Quadrupolar, and Heterometal Bonding Interactions , 2019, Comments on Inorganic Chemistry.

[10]  Yuri L. Mikhlin,et al.  X-ray Photoelectron Spectroscopy (XPS) Study of the Products Formed on Sulfide Minerals Upon the Interaction with Aqueous Platinum (IV) Chloride Complexes , 2018, Minerals.

[11]  Hong-Lin Lu,et al.  From Metal‐Metal Bonding to Supra‐Metal‐Metal Bonding Directed Self‐Assembly: Supramolecular Architectures of Group 10 and 11 Metals with Ligands from Mono‐ to Poly‐Pyrazoles , 2018, Israel Journal of Chemistry.

[12]  G. Schatz,et al.  Tunable Excited-State Properties and Dynamics as a Function of Pt-Pt Distance in Pyrazolate-Bridged Pt(II) Dimers. , 2016, The journal of physical chemistry. A.

[13]  Hartmut Yersin,et al.  Photophysical properties of cyclometalated Pt(II) complexes: counterintuitive blue shift in emission with an expanded ligand π system. , 2013, Inorganic chemistry.

[14]  F. Castellano,et al.  Charge-Transfer and Ligand-Localized Photophysics in Luminescent Cyclometalated Pyrazolate-Bridged Dinuclear Platinum(II) Complexes , 2013 .

[15]  R. Periana,et al.  Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction. , 2012, Accounts of chemical research.

[16]  E. Urriolabeitia,et al.  Cyclometallation of Heterocycles: A Reliable Strategy for Selective Functionalization , 2012 .

[17]  F. E. Jorge,et al.  All-electron double zeta basis sets for platinum: Estimating scalar relativistic effects on platinum(II) anticancer drugs , 2010 .

[18]  A. A. Mohamed,et al.  Advances in the coordination chemistry of nitrogen ligand complexes of coinage metals , 2010 .

[19]  M. Albrecht Cyclometalation using d-block transition metals: fundamental aspects and recent trends. , 2010, Chemical reviews.

[20]  Thomas S. Teets,et al.  Halogen photoreductive elimination from gold(III) centers. , 2009, Journal of the American Chemical Society.

[21]  R. Raptis,et al.  Dinuclear gold(III) pyrazolato complexes – Synthesis, structural characterization and transformation to their trinuclear gold(I) and gold(I/III) analogues , 2009 .

[22]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[23]  M. Lam,et al.  Synthesis and spectroscopic studies of cyclometalated Pt(II) complexes containing a functionalized cyclometalating ligand, 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine. , 2007, Inorganic chemistry.

[24]  Chérif F. Matta,et al.  The Quantum Theory of Atoms in Molecules , 2007 .

[25]  S. Sakaki,et al.  Deep blue mixed-valent PtIIIPtIIIPtII complex [Pt3Br2(mu-pz)6] (pz=pyrazolate) showing valence-detrapping behavior in solution. , 2006, Chemistry.

[26]  Mats Tilset,et al.  Mechanistic aspects of C-H activation by Pt complexes. , 2005, Chemical reviews.

[27]  Biwu Ma,et al.  Synthetic control of Pt...Pt separation and photophysics of binuclear platinum complexes. , 2005, Journal of the American Chemical Society.

[28]  Wei Lu,et al.  Light-emitting tridentate cyclometalated platinum(II) complexes containing sigma-alkynyl auxiliaries: tuning of photo- and electrophosphorescence. , 2004, Journal of the American Chemical Society.

[29]  Tasuku Ito,et al.  An Unbridged Platinum(III) Dimer with Added Chloro Ligands in Equatorial Sites, [Pt2Cl2(phpy)4] (Hphpy = phenylpyridine), Synthesized by an Oxidation with Aurous Complex , 2004 .

[30]  T. Kojima,et al.  Pyrazolato-bridged polynuclear palladium and platinum complexes. Synthesis, structure, and reactivity. , 2003, Inorganic chemistry.

[31]  J. Fackler Forty-five years of chemical discovery including a golden quarter-century. , 2002, Inorganic chemistry.

[32]  R. Raptis,et al.  Oxidation of gold(I) pyrazolates by aqua regia. X-Ray crystal structures of the first examples of trinuclear AuIII3 and AuIAuIII2 pyrazolato complexes , 2002 .

[33]  Yao-Lun Chen,et al.  A Study of Unsaturated Pyrazolate-Bridged Diruthenium Carbonyl Complexes , 2002 .

[34]  Kazuko Matsumoto,et al.  Organometallic chemistry of platinum-blue derived platinumIII dinuclear complexes , 2002 .

[35]  R. Raptis,et al.  Stepwise, ring-closure synthesis and characterization of a homoleptic palladium(II)-pyrazolato cyclic trimer. , 2002, Chemical communications.

[36]  A. Laguna,et al.  Coordination chemistry of gold(II) complexes , 1999 .

[37]  C. Che,et al.  Synthesis of Organoplatinum Oligomers by Employing N-Donor Bridges with Predesigned Geometry: Structural and Photophysical Properties of Luminescent Cyclometalated Platinum(II) Macrocycles , 1999 .

[38]  B. Lippert Impact of Cisplatin on the Recent Development of Pt Coordination Chemistry: A Case Study , 1999 .

[39]  F. Lahoz,et al.  NEW PERSPECTIVE ON THE FORMATION AND REACTIVITY OF METAL-METAL-BONDED DINUCLEAR RHODIUM AND IRIDIUM COMPLEXES , 1997 .

[40]  J. Fackler Metal-metal bond formation in the oxidative addition to dinuclear gold(I) species. Implications from dinuclear and trinuclear gold chemistry for the oxidative addition process generally , 1997 .

[41]  M. J. Irwin,et al.  A strategy for synthesis of large gold rings , 1996 .

[42]  R. Raptis,et al.  Synthesis and characterization of a diplatinum(III)-tetrakis(.alpha.-dioximato) complex containing an unsupported metal-metal bond , 1992 .

[43]  G. Natile,et al.  Synthesis and x-ray structural characterization of the first unbridged diplatinum(III) compound: bis[bis(1-imino-1-hydroxy-2,2-dimethylpropane)trichloroplatinum(III)] , 1991 .

[44]  R. Raptis,et al.  The synthesis and crystal structure of a mixed-valence, digold(I)/gold(III), pyrazolato complex stable in aqua regia. The x-ray photoelectron study of homo- and heterovalent gold-pyrazolato trimers , 1990 .

[45]  A. Canty,et al.  Cyclometallation of polydentate ligands containing pyrazole groups, including the synthesis of platinum(IV) complexes with tripodal [NCN]- ligand systems , 1990 .

[46]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[47]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[48]  R. Raptis,et al.  The structure of [Au-μ-{3,5-(C6H5)2C3HN2}]3Cl2: a trinuclear mixed-valence gold pyrazolate complex , 1988 .

[49]  R. Raptis,et al.  Structural characterization of a linear [Au.cntdot..cntdot..cntdot.Pt.cntdot..cntdot..cntdot.Au] complex, Au2Pt(CH2P(S)Ph2)4, and its oxidized linear metal-metal bonded [Au-Pt-Au] product, Au2Pt(CH2P(S)Ph2)4Cl2 , 1987 .

[50]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[51]  J. Strähle,et al.  Pyrazolat und Tetrazolat als Brückenliganden in [Pt(pz)2]3, [Pt(pz)2]∞ und [Pt(tz)2]∞ Die Kristallstruktur von [Pt(pz)2]3† , 1985 .

[52]  B. Bosnich,et al.  Bimetallic reactivity. Oxidative-addition and reductive-elimination reactions of rhodium and iridium bimetallic complexes , 1985 .

[53]  J. Atwood,et al.  Pyrazolyl-bridged iridium dimers. 2. Contrasting modes of two-center oxidative addition to a bimetallic system and reductive access to the starting complex: three key diiridium structures representing short nonbonding and long and short bonding metal-metal interactions , 1982 .

[54]  F. Albert Cotton,et al.  Multiple bonds between metal atoms , 1982 .

[55]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .