Incorporating Decision Procedures in Implicit Induction

In this paper we present an approach to integrating reasoning specialists into cover set induction based on constraint contextual rewriting. The approach has been successfully used to incorporate decision procedures into the SPIKE prover. Computer experiments on non-trivial verification problems illustrating the effectiveness of the proposed technique are given. The generality of the approach allows for the integration of computer algebra algorithms and techniques into induction theorem provers. To illustrate this, we discuss the integration of the Buchberger algorithm into our framework.

[1]  Alessandro Armando,et al.  Constraint contextual rewriting , 2003, J. Symb. Comput..

[2]  D. Naidich On generic representation of implicit induction procedures , 1996 .

[3]  Edward Y. Chang,et al.  STeP: The Stanford Temporal Prover , 1995, TAPSOFT.

[4]  Sorin Stratulat Applying semantic subsumption rules in the context of inductive proofs , 1998 .

[5]  Alessandro Armando,et al.  Termination of Constraint Contextual Rewriting , 2000, FroCoS.

[6]  Michaël Rusinowitch,et al.  Automated Verification by Induction with Associative-Commutative Operators , 1996, CAV.

[7]  Michaël Rusinowitch,et al.  Mechanical Verification of an Ideal Incremental ABR Conformance Algorithm , 2003, Journal of Automated Reasoning.

[8]  Hantao Zhang,et al.  Contextual Rewriting in Automated Reasoning , 1995, Fundam. Informaticae.

[9]  N. S. Barnett,et al.  Private communication , 1969 .

[10]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.

[11]  Robert S. Boyer,et al.  MJRTY: A Fast Majority Vote Algorithm , 1991, Automated Reasoning: Essays in Honor of Woody Bledsoe.

[12]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[13]  Michaël Rusinowitch,et al.  Uniform Derivation of Decision Procedures by Superposition , 2001, CSL.

[14]  Natarajan Shankar,et al.  PVS: A Prototype Verification System , 1992, CADE.

[15]  Douglas J. Howe Reasoning About Functional Programs in Nuprl , 1993, Functional Programming, Concurrency, Simulation and Automated Reasoning.

[16]  Michael J. Maher,et al.  On Fourier's algorithm for linear arithmetic constraints , 1992, Journal of Automated Reasoning.

[17]  Sorin Stratulat,et al.  Preuves par récurrence avec ensembles couvrants contextuels. Application à la vérification de logiciels de télécommunications , 2000 .

[18]  Sorin Stratulat,et al.  A General Framework to Build Contextual Cover Set Induction Provers , 2001, J. Symb. Comput..

[19]  Robert S. Boyer,et al.  Automated Reasoning: Essays in Honor of Woody Bledsoe , 1991, Automated Reasoning.

[20]  Michaël Rusinowitch,et al.  Mechanical Verification of an Ideal Incremental ABR Conformance , 2000, CAV.

[21]  B. Buchberger,et al.  Gröbner bases and applications , 1998 .

[22]  Hantao Zhang,et al.  Contextual Rewriting , 1985, RTA.

[23]  Michaël Rusinowitch,et al.  Implicit induction in conditional theories , 2004, Journal of Automated Reasoning.

[24]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[25]  Robert S. Boyer,et al.  Integrating decision procedures into heuristic theorem provers: a case study of linear arithmetic , 1988 .

[26]  Gérard Huet,et al.  On the Uniform Halting Problem for Term Rewriting Systems , 1978 .

[27]  Nicolas Beldiceanu,et al.  Constraint Logic Programming , 1997 .

[28]  Robert S. Boyer,et al.  Computational Logic , 1990, ESPRIT Basic Research Series.

[29]  Adel Bouhoula,et al.  Automated Theorem Proving by Test Set Induction , 1997, J. Symb. Comput..