Irradiation of suspensions of Escherichia coli ([approximately] 10[sup 6] cells/mL) and TiO[sub 2] (anatase) with UV-visible light of wave-lengths longer than 380 nm resulted in the killing of the bacteria within minutes. Oxygen was found to be a prerequisite for the bactericidal properties of the photocatalyst. Bacterial killing was found to adhere to first-order kinetics. The rate constant was proportional to the square root of the concentration of TiO[sub 2] and proportional to the incident light intensity in the range [approximately] 180- [approximately] 1660 [mu]E s[sup [minus]1] m[sup [minus]2]. The trends in these simulated laboratory experiments were mimicked by outdoor tests conducted under the summer noonday sun in Texas. The implications of these results as well as those of previous investigations in terms of practical applicability to solar-assisted water treatment and disinfection at remote sites are discussed relative to water technologies currently considered as viable as alternatives to chlorination. 24 refs., 8 figs.