Inositol 1,4,5-Trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar purkinje cells

[1]  K. Campbell,et al.  The ryanodine receptor/Ca2+ release channel. , 1993, The Journal of biological chemistry.

[2]  S. Snyder,et al.  Differential immunohistochemical localization of inositol 1,4,5- trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  S. Seino,et al.  Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. , 1993, The Journal of biological chemistry.

[4]  D. Rusakov,et al.  Tridimensional organization of Purkinje neuron cisternal stacks, a specialized endoplasmic reticulum subcompartment rich in inositol 1,4,5-trisphosphate receptors , 1993, Journal of neurocytology.

[5]  K. Mikoshiba,et al.  Two types of ryanodine receptors in mouse brain: Skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons , 1992, Neuron.

[6]  J. Meldolesi Multifarious IP3 receptors , 1992, Current Biology.

[7]  C. Sotelo,et al.  Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis , 1992, Journal of neurocytology.

[8]  W. Dunn,et al.  Immunological evidence for eight spans in the membrane domain of 3- hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum , 1992, The Journal of cell biology.

[9]  S. Snyder,et al.  Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  P. De Camilli,et al.  Ca2+ stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogeneous distribution of the InsP3 receptor, Ca(2+)-ATPase, and calsequestrin , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Solomon H. Snyder,et al.  Nitric oxide, a novel neuronal messenger , 1992, Neuron.

[12]  T. Südhof,et al.  Structure of a novel InsP3 receptor. , 1991, The EMBO journal.

[13]  P. De Camilli,et al.  Colocalization of synaptophysin with transferrin receptors: implications for synaptic vesicle biogenesis , 1991, The Journal of cell biology.

[14]  Clara Franzini-Armstrong,et al.  The brain ryanodine receptor: A caffeine-sensitive calcium release channel , 1991, Neuron.

[15]  M H Ellisman,et al.  Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons , 1991, The Journal of cell biology.

[16]  D. Clegg,et al.  Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip , 1991, The Journal of cell biology.

[17]  F. Wuytack,et al.  A study of the organellar Ca2(+)-transport ATPase isozymes in pig cerebellar Purkinje neurons , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  X. Xie,et al.  Structure of the 116-kDa polypeptide of the clathrin-coated vesicle/synaptic vesicle proton pump. , 1991, The Journal of biological chemistry.

[19]  J. Garthwaite Glutamate, nitric oxide and cell-cell signalling in the nervous system , 1991, Trends in Neurosciences.

[20]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[21]  T. Südhof,et al.  The ligand binding site and transduction mechanism in the inositol‐1,4,5‐triphosphate receptor. , 1990, The EMBO journal.

[22]  J. H. Collins,et al.  Calsequestrin, a component of the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of chicken cerebellum , 1990, Neuron.

[23]  K. Campbell,et al.  Solubilization and biochemical characterization of the high affinity [3H]ryanodine receptor from rabbit brain membranes. , 1990, The Journal of biological chemistry.

[24]  T. Deerinck,et al.  Identification and localization of ryanodine binding proteins in the avian central nervous system , 1990, Neuron.

[25]  S. Snyder,et al.  The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment , 1990, The Journal of cell biology.

[26]  T. Südhof,et al.  Structure and expression of the rat inositol 1,4,5-trisphosphate receptor. , 1990, The Journal of biological chemistry.

[27]  K. Mikoshiba,et al.  Immunogold localization of inositol 1, 4, 5-trisphosphate (InsP3) receptor in mouse cerebellar Purkinje cells using three monoclonal antibodies. , 1990, Cell structure and function.

[28]  T. Südhof,et al.  Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C , 1990, Nature.

[29]  T. Südhof,et al.  lnsP3 receptor turnaround , 1990, Nature.

[30]  S. Fleischer,et al.  Isolation and characterization of the inositol trisphosphate receptor from smooth muscle. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. Phillips,et al.  Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. , 1990, The Journal of biological chemistry.

[32]  K. Mikoshiba,et al.  A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5‐trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex. , 1990, The EMBO journal.

[33]  R Y Tsien,et al.  Calcium channels, stores, and oscillations. , 1990, Annual review of cell biology.

[34]  T. Südhof,et al.  Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor , 1989, Nature.

[35]  Teiichi Furuichi,et al.  Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400 , 1989, Nature.

[36]  Michael J. Berridge,et al.  Inositol phosphates and cell signalling , 1989, Nature.

[37]  Z. Kaprielian,et al.  Identification of a Ca2+-ATPase in cerebellar Purkinje cells. , 1989, Brain research. Molecular brain research.

[38]  Christopher A. Ross,et al.  Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons , 1989, Nature.

[39]  H. Takeshima,et al.  Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor , 1989, Nature.

[40]  S Moncada,et al.  Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. , 1989, Biochemical pharmacology.

[41]  J. Frank,et al.  Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum , 1989, Nature.

[42]  S. Fleischer,et al.  Biochemistry and biophysics of excitation-contraction coupling. , 1989, Annual review of biophysics and biophysical chemistry.

[43]  Harold P. Erickson,et al.  Purification and reconstitution of the calcium release channel from skeletal muscle , 1988, Nature.

[44]  S. Snyder,et al.  Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. , 1987, The Journal of biological chemistry.

[45]  P. Strata,et al.  Morphology of Purkinje cell axon terminals in intracerebellar nuclei following inferior olive lesion , 1987, Neuroscience.

[46]  J. Kearney,et al.  Posttranslational association of immunoglobulin heavy chain binding protein with nascent heavy chains in nonsecreting and secreting hybridomas , 1986, The Journal of cell biology.

[47]  J. Slot,et al.  A new method of preparing gold probes for multiple-labeling cytochemistry. , 1985, European journal of cell biology.

[48]  L. Garcia-Segura,et al.  Neurons with whorl bodies have increased numbers of synapses , 1985, Brain Research.

[49]  P. Rigby,et al.  High efficiency gene transfer into mammalian cells. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  C. Franzini-armstrong,et al.  Subunit structure of junctional feet in triads of skeletal muscle: a freeze-drying, rotary-shadowing study , 1984, The Journal of cell biology.

[51]  S. Fleischer,et al.  Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle , 1984, The Journal of cell biology.

[52]  Richard G. W. Anderson,et al.  Increase in membrane cholesterol: A possible trigger for degradation of HMG CoA reductase and crystalloid endoplasmic reticulum in UT-1 cells , 1984, Cell.

[53]  L. Orci,et al.  Ultrastructural analysis of crystalloid endoplasmic reticulum in UT-1 cells and its disappearance in response to cholesterol. , 1983, Journal of cell science.

[54]  G. Moonen,et al.  Cerebellar macroneurons in microexplant cell culture: Ultrastructural morphology , 1982, Neuroscience.

[55]  H. Hansson Lamellar bodies in Purkinje nerve cells experimentally induced by electric field , 1981, Brain Research.

[56]  J. Bilbao,et al.  Annulate lamellae in spontaneous prolactin cell adenomas of the rat pituitary. , 1977, Anatomischer Anzeiger.

[57]  Sanford L. Palay,et al.  The Purkinje Cell , 1974 .

[58]  S. Palay,et al.  Altered axons and axon terminals in the lateral vestibular nucleus of the rat. Possible example of axonal remodeling. , 1971, Laboratory investigation; a journal of technical methods and pathology.

[59]  O. Larsell,et al.  The comparative anatomy and histology of the cerebellum , 1967 .

[60]  H. Sheldon,et al.  Early postmortem changes in cerebellar neurons of the rat , 1966 .

[61]  R. Schultz,et al.  Fixation of the central nervous system for electron microscopy by aldehyde perfusion: III. Structural changes after exsanguination and delayed perfusion , 1966 .

[62]  R. Herndon LAMELLAR BODIES, AN UNUSUAL ARRANGEMENT OF THE GRANULAR ENDOPLASMIC RETICULUM , 1964, The Journal of cell biology.

[63]  Robert M. Herndon,et al.  THE FINE STRUCTURE OF THE PURKINJE CELL , 1963, The Journal of cell biology.

[64]  H. Fernández-morán ELECTRON MICROSCOPY OF NERVOUS TISSUE , 1957 .