Transport inefficiency in branched-out mesoscopic networks: an analog of the Braess paradox.
暂无分享,去创建一个
S. Huant | M. Pala | X. Wallart | L. Desplanque | B. Hackens | V. Bayot | H Sellier | F. Martins | M G Pala | B Hackens | F Martins | S Huant | L Desplanque | X Wallart | V Bayot | S Baltazar | P Liu | H. Sellier | P. Liu | S. Baltazar
[1] A Cappy,et al. Dwell-time-limited coherence in open quantum dots. , 2005, Physical review letters.
[2] B. Bułka,et al. Threshold effects for quantum transport in multiterminal nanostructures , 2009 .
[3] Measurement of the tip-induced potential in scanning gate experiments , 2007, cond-mat/0702490.
[4] Claude M. Penchina,et al. The Braess paradox in mechanical, traffic, and other networks , 2003 .
[5] A Cappy,et al. Imaging electron wave functions inside open quantum rings. , 2007, Physical review letters.
[6] Michael T. Gastner,et al. Price of anarchy in transportation networks: efficiency and optimality control. , 2007, Physical review letters.
[7] R. M. Westervelt,et al. Coherent branched flow in a two-dimensional electron gas , 2000, Nature.
[8] J. Nash. Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[9] B. Szafran. Scanning gate microscopy simulations for quantum rings: Effective potential of the tip and conductance maps , 2011 .
[10] T. Ouisse,et al. Local density of states in mesoscopic samples from scanning gate microscopy , 2007, 0711.3370.
[11] R. Westervelt,et al. Imaging a single-electron quantum dot. , 2005, Nano letters (Print).
[12] B. M. Fulk. MATH , 1992 .
[13] A. Hohenau,et al. Surface plasmon propagation in an elliptical corral , 2005, 1002.1588.
[14] Büttiker,et al. Four-terminal phase-coherent conductance. , 1986, Physical review letters.
[15] K. West,et al. Unexpected features of branched flow through high-mobility two-dimensional electron gases , 2010, 1009.3670.
[16] Serge Huant,et al. On the imaging of electron transport in semiconductor quantum structures by scanning-gate microscopy: successes and limitations , 2011, 1104.2032.
[17] D. Ferry,et al. Transport in nanostructures , 1999 .
[18] Pradeep Dubey,et al. Inefficiency of Nash Equilibria , 1986, Math. Oper. Res..
[19] T. Ouisse,et al. Imaging and controlling electron transport inside a quantum ring , 2006 .
[20] Joel E. Cohen,et al. Paradoxical behaviour of mechanical and electrical networks , 1991, Nature.
[21] S. Huant,et al. Imaging Coulomb islands in a quantum Hall interferometer. , 2010, Nature communications.
[22] R. Westervelt,et al. Imaging magnetic focusing of coherent electron waves , 2007, 0704.1491.
[23] T. Ouisse,et al. Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects , 2009, Nanotechnology.
[24] Spatially resolved manipulation of single electrons in quantum dots using a scanned probe. , 2004, cond-mat/0411264.
[25] Anna Nagurney,et al. On a Paradox of Traffic Planning , 2005, Transp. Sci..
[26] G. Mahan. Many-particle physics , 1981 .
[27] Heller,et al. Imaging coherent electron flow from a quantum point contact , 2000, Science.
[28] Dietrich Braess,et al. Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.
[29] Robert S. Whitney,et al. Huge conductance peak caused by symmetry in double quantum dots. , 2009, Physical review letters.