Transport inefficiency in branched-out mesoscopic networks: an analog of the Braess paradox.

We present evidence for a counterintuitive behavior of semiconductor mesoscopic networks that is the analog of the Braess paradox encountered in classical networks. A numerical simulation of quantum transport in a two-branch mesoscopic network reveals that adding a third branch can paradoxically induce transport inefficiency that manifests itself in a sizable conductance drop of the network. A scanning-probe experiment using a biased tip to modulate the transmission of one branch in the network reveals the occurrence of this paradox by mapping the conductance variation as a function of the tip voltage and position.

[1]  A Cappy,et al.  Dwell-time-limited coherence in open quantum dots. , 2005, Physical review letters.

[2]  B. Bułka,et al.  Threshold effects for quantum transport in multiterminal nanostructures , 2009 .

[3]  Measurement of the tip-induced potential in scanning gate experiments , 2007, cond-mat/0702490.

[4]  Claude M. Penchina,et al.  The Braess paradox in mechanical, traffic, and other networks , 2003 .

[5]  A Cappy,et al.  Imaging electron wave functions inside open quantum rings. , 2007, Physical review letters.

[6]  Michael T. Gastner,et al.  Price of anarchy in transportation networks: efficiency and optimality control. , 2007, Physical review letters.

[7]  R. M. Westervelt,et al.  Coherent branched flow in a two-dimensional electron gas , 2000, Nature.

[8]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B. Szafran Scanning gate microscopy simulations for quantum rings: Effective potential of the tip and conductance maps , 2011 .

[10]  T. Ouisse,et al.  Local density of states in mesoscopic samples from scanning gate microscopy , 2007, 0711.3370.

[11]  R. Westervelt,et al.  Imaging a single-electron quantum dot. , 2005, Nano letters (Print).

[12]  B. M. Fulk MATH , 1992 .

[13]  A. Hohenau,et al.  Surface plasmon propagation in an elliptical corral , 2005, 1002.1588.

[14]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[15]  K. West,et al.  Unexpected features of branched flow through high-mobility two-dimensional electron gases , 2010, 1009.3670.

[16]  Serge Huant,et al.  On the imaging of electron transport in semiconductor quantum structures by scanning-gate microscopy: successes and limitations , 2011, 1104.2032.

[17]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[18]  Pradeep Dubey,et al.  Inefficiency of Nash Equilibria , 1986, Math. Oper. Res..

[19]  T. Ouisse,et al.  Imaging and controlling electron transport inside a quantum ring , 2006 .

[20]  Joel E. Cohen,et al.  Paradoxical behaviour of mechanical and electrical networks , 1991, Nature.

[21]  S. Huant,et al.  Imaging Coulomb islands in a quantum Hall interferometer. , 2010, Nature communications.

[22]  R. Westervelt,et al.  Imaging magnetic focusing of coherent electron waves , 2007, 0704.1491.

[23]  T. Ouisse,et al.  Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects , 2009, Nanotechnology.

[24]  Spatially resolved manipulation of single electrons in quantum dots using a scanned probe. , 2004, cond-mat/0411264.

[25]  Anna Nagurney,et al.  On a Paradox of Traffic Planning , 2005, Transp. Sci..

[26]  G. Mahan Many-particle physics , 1981 .

[27]  Heller,et al.  Imaging coherent electron flow from a quantum point contact , 2000, Science.

[28]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[29]  Robert S. Whitney,et al.  Huge conductance peak caused by symmetry in double quantum dots. , 2009, Physical review letters.