On discrete evolutionary dynamics driven by quadratic interactions

After an introduction to the general topic of models for a given locus of a diploid population whose quadratic dynamics is determined by a fitness landscape, we consider more specifically the models that can be treated using genetic (or train) algebras. In this setup, any quadratic offspring interaction can produce any type of offspring and after the use of specific changes of basis, we study the evolution and possible stability of some examples. We also consider some examples that cannot be treated using the framework of genetic algebras. Among these are bistochastic matrices.

[1]  P. A. P. Moran,et al.  A MATRIX INEQUALITY , 1960 .

[2]  S. Karlin Mathematical models, problems, and controversies of evolutionary theory , 1984 .

[3]  V. M. Abraham The Genetic Algebra of Polyploids , 1980 .

[4]  F. Weissing,et al.  Selection and segregation distortion in a sex-differentiated population. , 2001, Theoretical population biology.

[5]  H. Kesten Some nonlinear stochastic growth models , 1971 .

[6]  Mary Lynn Reed Algebraic structure of genetic inheritance , 1997 .

[7]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[8]  I. M. H. Etherington II.—Non-Associative Algebra and the Symbolism of Genetics , 1941 .

[9]  I. M. H. Etherington SPECIAL TRAIN ALGEBRAS , 1941 .

[10]  N. McCoy,et al.  On the characteristic roots of matric polynomials , 1936 .

[11]  J. Kingman,et al.  Mathematics of genetic diversity , 1982 .

[12]  A. Wörz-Busekros Relationship between genetic algebras and semicommutative matrices , 1981 .

[13]  Farrukh Mukhamedov,et al.  QUADRATIC STOCHASTIC OPERATORS AND PROCESSES: RESULTS AND OPEN PROBLEMS , 2011 .

[14]  A. Hmamed,et al.  A matrix inequality , 1989 .

[15]  W. Ewens Mathematical Population Genetics : I. Theoretical Introduction , 2004 .

[16]  A. Wörz-Busekros Algebras in genetics. , 1980 .

[17]  V. M. Abraham Linearizing Quadratic Transformations in Genetic Algebras , 1980 .

[18]  E. Akin,et al.  Mathematical structures in population genetics , 1992 .

[19]  R. Buerger The Mathematical Theory of Selection, Recombination, and Mutation , 2000 .

[20]  P. Holgate Genetic Algebras Associated with Polyploidy , 1966, Proceedings of the Edinburgh Mathematical Society.

[21]  I. M. H. Etherington XXIII.—Genetic Algebras , 1940 .

[22]  Neal H. McCoy,et al.  On quasi-commutative matrices , 1934 .

[23]  J. F. C. Kingman,et al.  ON AN INEQUALITY IN PARTIAL AVERAGES , 1961 .

[24]  N. A. Koreshkov,et al.  On the Simultaneous Triangulability of Matrices , 2000 .

[25]  H. Kesten Quadratic transformations: a model for population growth. II , 1970, Advances in Applied Probability.