On discrete evolutionary dynamics driven by quadratic interactions
暂无分享,去创建一个
[1] P. A. P. Moran,et al. A MATRIX INEQUALITY , 1960 .
[2] S. Karlin. Mathematical models, problems, and controversies of evolutionary theory , 1984 .
[3] V. M. Abraham. The Genetic Algebra of Polyploids , 1980 .
[4] F. Weissing,et al. Selection and segregation distortion in a sex-differentiated population. , 2001, Theoretical population biology.
[5] H. Kesten. Some nonlinear stochastic growth models , 1971 .
[6] Mary Lynn Reed. Algebraic structure of genetic inheritance , 1997 .
[7] Josef Hofbauer,et al. Evolutionary Games and Population Dynamics , 1998 .
[8] I. M. H. Etherington. II.—Non-Associative Algebra and the Symbolism of Genetics , 1941 .
[9] I. M. H. Etherington. SPECIAL TRAIN ALGEBRAS , 1941 .
[10] N. McCoy,et al. On the characteristic roots of matric polynomials , 1936 .
[11] J. Kingman,et al. Mathematics of genetic diversity , 1982 .
[12] A. Wörz-Busekros. Relationship between genetic algebras and semicommutative matrices , 1981 .
[13] Farrukh Mukhamedov,et al. QUADRATIC STOCHASTIC OPERATORS AND PROCESSES: RESULTS AND OPEN PROBLEMS , 2011 .
[14] A. Hmamed,et al. A matrix inequality , 1989 .
[15] W. Ewens. Mathematical Population Genetics : I. Theoretical Introduction , 2004 .
[16] A. Wörz-Busekros. Algebras in genetics. , 1980 .
[17] V. M. Abraham. Linearizing Quadratic Transformations in Genetic Algebras , 1980 .
[18] E. Akin,et al. Mathematical structures in population genetics , 1992 .
[19] R. Buerger. The Mathematical Theory of Selection, Recombination, and Mutation , 2000 .
[20] P. Holgate. Genetic Algebras Associated with Polyploidy , 1966, Proceedings of the Edinburgh Mathematical Society.
[21] I. M. H. Etherington. XXIII.—Genetic Algebras , 1940 .
[22] Neal H. McCoy,et al. On quasi-commutative matrices , 1934 .
[23] J. F. C. Kingman,et al. ON AN INEQUALITY IN PARTIAL AVERAGES , 1961 .
[24] N. A. Koreshkov,et al. On the Simultaneous Triangulability of Matrices , 2000 .
[25] H. Kesten. Quadratic transformations: a model for population growth. II , 1970, Advances in Applied Probability.