Flavoring components of raw monsooned arabica coffee and their changes during radiation processing.
暂无分享,去创建一个
Volatile aroma principles, nonvolatile taste constituents (caffeine and chlorogenic and caffeic acids), and glycosidically bound aroma compounds of monsooned and nonmonsooned raw arabica coffee were analyzed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Among the most potent odor active constituents known to contribute to the aroma of the green beans, 3-isopropyl-2-methoxypyrazine, 3-isobutyl-2-methoxypyrazine, 4-vinylguaiacol, beta-damascenone, (E)-2-nonenal, trans,trans-2,4-decadienal, phenylacetaldehyde, and 3-methylbutyric acid were detected by GC-MS in both samples. A decrease in content of methoxypyrazines and an increase in 4-vinylguaiacol and isoeugenol resulted in a dominant spicy note of monsooned coffee. These phenolic compounds exist partly as their glycosides, and their release from the bound precursors during monsooning accounted for their higher content in monsooned coffee. A considerable decrease in astringent chlorogenic acid as a consequence of hydrolysis to bitter caffeic acid was noted in monsooned coffee. Radiation processing of nonmonsooned beans at a dose of 5 kGy resulted in an increased rate of monsooning. At this dose a quantitative increase in most of the aroma active components could be observed in all samples studied. Hydrolysis of chlorogenic acid to caffeic acid was noted in radiation-processed monsooned coffee beans irrespective of whether the treatment was carried out before or after monsooning. These changes were, however, not observed in irradiated, nonmonsooned coffee beans, suggesting an enzymatic rather than a radiolytic cleavage of chlorogenic acid. A rationale behind the mechanism of monsooning and radiation-induced enhancement of the monsooning process is discussed.