Luminescent Open Metal Sites within a Metal–Organic Framework for Sensing Small Molecules

[1]  Craig M. Brown,et al.  Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2. , 2006, Journal of the American Chemical Society.

[2]  S. Qiu,et al.  A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. , 2006, Chemical communications.

[3]  B. Moyer,et al.  Anion separation by selective crystallization of metal-organic frameworks. , 2006, Inorganic chemistry.

[4]  Ga‐Lai Law,et al.  A Highly Porous Luminescent Terbium–Organic Framework for Reversible Anion Sensing , 2006 .

[5]  Jihong Yu,et al.  Three metal-organic frameworks prepared from mixed solvents of DMF and HAc , 2006 .

[6]  D. Olson,et al.  Zn(tbip) (H2tbip= 5-tert-butyl isophthalic acid): a highly stable guest-free microporous metal organic framework with unique gas separation capability. , 2006, Journal of the American Chemical Society.

[7]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[8]  Chengdu Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[9]  M. Hirscher,et al.  Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. , 2006, Chemical communications.

[10]  Kimoon Kim,et al.  A homochiral metal-organic material with permanent porosity, enantioselective sorption properties, and catalytic activity. , 2006, Angewandte Chemie.

[11]  D. Olson,et al.  Separation of hydrocarbons with a microporous metal-organic framework. , 2006, Angewandte Chemie.

[12]  R. Custelcean,et al.  A metal-organic framework functionalized with free carboxylic acid sites and its selective binding of a Cl(H2O)4(-) cluster. , 2005, Journal of the American Chemical Society.

[13]  H. Fjellvåg,et al.  An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. , 2005, Angewandte Chemie.

[14]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[15]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[16]  Wenbin Lin Homochiral Porous Metal-Organic Frameworks: Why and How? , 2005 .

[17]  V. Blatov,et al.  Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD) , 2005 .

[18]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[19]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[20]  Jeffrey R. Long,et al.  Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3 , 2005 .

[21]  Hyunuk Kim,et al.  Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. , 2005, Chemistry.

[22]  P. Maggard,et al.  Pillared hybrid solids with access to coordinatively unsaturated metal sites: an alternative strategy. , 2005, Angewandte Chemie.

[23]  Robert J Hill,et al.  New approaches to the analysis of high connectivity materials: design frameworks based upon 4(4)- and 6(3)-subnet tectons. , 2005, Accounts of chemical research.

[24]  C. Serre,et al.  Crystallized frameworks with giant pores: are there limits to the possible? , 2005, Accounts of chemical research.

[25]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[26]  Mir Wais Hosseini,et al.  Molecular tectonics: from simple tectons to complex molecular networks. , 2005, Accounts of chemical research.

[27]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[28]  M J Rosseinsky,et al.  Design, chirality, and flexibility in nanoporous molecule-based materials. , 2005, Accounts of chemical research.

[29]  Bin Zhao,et al.  A promising Mg(II)-ion-selective luminescent probe: structures and properties of Dy-Mn polymers with high symmetry. , 2005, Chemistry.

[30]  D. Leznoff,et al.  Cu[Au(CN)2]2(DMSO)2: golden polymorphs that exhibit vapochromic behavior. , 2004, Journal of the American Chemical Society.

[31]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[32]  Bin Zhao,et al.  Coordination polymers containing 1D channels as selective luminescent probes. , 2004, Journal of the American Chemical Society.

[33]  Tapas Kumar Maji,et al.  Expanding and shrinking porous modulation based on pillared-layer coordination polymers showing selective guest adsorption. , 2004, Angewandte Chemie.

[34]  J. Atwood,et al.  A new type of material for the recovery of hydrogen from gas mixtures. , 2004, Angewandte Chemie.

[35]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[36]  C. Rao,et al.  Metal carboxylates with open architectures. , 2004, Angewandte Chemie.

[37]  Weisheng Liu,et al.  Lanthanide coordination polymers and their Ag+-modulated fluorescence. , 2004, Journal of the American Chemical Society.

[38]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[39]  Wenbin Lin,et al.  Chiral, porous, hybrid solids for highly enantioselective heterogeneous asymmetric hydrogenation of beta-keto esters. , 2003, Angewandte Chemie.

[40]  Wenbin Lin,et al.  Chiral porous hybrid solids for practical heterogeneous asymmetric hydrogenation of aromatic ketones. , 2003, Journal of the American Chemical Society.

[41]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[42]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[43]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[44]  Kristie M. Adams,et al.  Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. , 2003, Journal of the American Chemical Society.

[45]  Jing Li,et al.  RPM-1: a recyclable nanoporous material suitable for ship-in-bottle synthesis and large hydrocarbon sorption. , 2003, Angewandte Chemie.

[46]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[47]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[48]  Michael O'Keeffe,et al.  Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate) [27] , 2000 .

[49]  G. Koten,et al.  Organoplatinum crystals for gas-triggered switches , 2000, Nature.

[50]  Zhengtao Xu,et al.  Persistent Honeycomb Structures in Porous and Other Two‐Component Solids , 2000 .

[51]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[52]  T. Reineke,et al.  From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites , 1999 .

[53]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[54]  Hailian Li,et al.  Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)−Benzenetricarboxylate Network , 1997 .

[55]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .