On the “Uniform” Observability of Discrete-Time Nonlinear Systems

In constructing an observer for a discrete-time nonlinear system, the system is commonly required to satisfy a certain kind of "uniform" observability condition, that is, the state should always be reconstructible from observation windows of a specific length, irrespective of the values of the state and inputs. In this technical note, it is proved that this "uniform" requirement is unnecessary in the sense that if the initial state and inputs are on a compact set, then the "uniform" observability is derived from its non-uniform counterpart.

[1]  H. Keller Non-linear observer design by transformation into a generalized observer canonical form , 1987 .

[2]  Yuehua Huang,et al.  Uniformly Observable and Globally Lipschitzian Nonlinear Systems Admit Global Finite-Time Observers , 2009, IEEE Transactions on Automatic Control.

[3]  Kurt Schlacher,et al.  On the observability of discrete-time dynamic systems - A geometric approach , 2008, Autom..

[4]  M. Zeitz The extended Luenberger observer for nonlinear systems , 1987 .

[5]  Wei Lin,et al.  Remarks on linearization of discrete-time autonomous systems and nonlinear observer design , 1995 .

[6]  Gildas Besançon,et al.  An Immersion-Based Observer Design for Rank-Observable Nonlinear Systems , 2007, IEEE Transactions on Automatic Control.

[7]  J. Grizzle,et al.  Observer design for nonlinear systems with discrete-time measurements , 1995, IEEE Trans. Autom. Control..

[8]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..

[9]  Mazen Alamir,et al.  Further results on nonlinear receding-horizon observers , 2002, IEEE Trans. Autom. Control..

[10]  F. Allgöwer,et al.  Output feedback stabilization of constrained systems with nonlinear predictive control , 2003 .

[11]  Sergey Pinchuk,et al.  A counterexamle to the strong real Jacobian conjecture , 1994 .

[12]  X. Xia,et al.  Uniformly Observable and Globally Lipschitzian Nonlinear Systems Admit Semi-global Finite-time Observers , 2008 .

[13]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[14]  S. Benamor,et al.  A Luenberger-like observer for discrete-time nonlinear systems , 1997, 1997 European Control Conference (ECC).

[15]  C∞ and L∞ Observability of Single-Input C∞-Systems , 2001 .

[16]  Dorothée Normand-Cyrot,et al.  On the observer design in discrete-time , 2003, Syst. Control. Lett..

[17]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[18]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[19]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[20]  Hassan Hammouri,et al.  Uniform observability and observer synthesis , 2007 .

[21]  Iasson Karafyllis,et al.  On the Observer Problem for Discrete-Time Control Systems , 2007, IEEE Transactions on Automatic Control.

[22]  G. Besançon An Overview on Observer Tools for Nonlinear Systems , 2007 .

[23]  Robert Engel,et al.  Nonlinear observers for autonomous Lipschitz continuous systems , 2003, IEEE Trans. Autom. Control..

[24]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[25]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[26]  Jean-Paul Gauthier,et al.  Observation and identification tools for non-linear systems: application to a fluid catalytic cracker , 2005 .

[27]  A. Isidori Nonlinear Control Systems , 1985 .

[28]  Andrew R. Teel,et al.  Discrete-time certainty equivalence output feedback: allowing discontinuous control laws including those from model predictive control , 2005, Autom..

[29]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[30]  G. Besancon,et al.  Some remarks on dynamic output feedback control of non uniformly observable systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[31]  Hassan Hammouri,et al.  State equivalence of discrete-time nonlinear control systems to state affine form up to input/output injection , 1998 .

[32]  Domenico D'Alessandro,et al.  Observability and Forward–Backward Observability of Discrete-Time Nonlinear Systems , 2002, Math. Control. Signals Syst..

[33]  John M. Fitts On the observability of non-linear systems with applications to non-linear regression analysis , 1972, Inf. Sci..

[34]  X. Xia,et al.  Semi-global finite-time observers for nonlinear systems , 2008, Autom..

[35]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[36]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .