Consonant Classification using Decision Directed Acyclic Graph Support Vector Machine Algorithm

This paper presents a statistical learning algorithm based on Support Vector Machines (SVMs) for the classification of Malayalam Consonant – Vowel (CV) speech unit in noisy environments. We extend SVM for multiclass classification using Decision Directed Acyclic Graph Support Vector Machine (DDAGSVM) algorithm. For classification, acoustical features are extracted using Wavelet Transform (WT) based Normalized Wavelet Hybrid Features (NWHF) by combining both Classical Wavelet Decomposition (CWD) and Wavelet Packet Decomposition (WPD) along with z – score normalization. An optimum mother wavelet for the present speech database is selected as db2 by trial and error approach. The classification results are then compared with both Artificial Neural Networks (ANNs) and k – Nearest Neighborhood (k – NN) classifiers. The results indicate that the DDAGSVM algorithm perform well in additive noisy condition.

[1]  Walt Detmar Meurers,et al.  Encyclopedia of Language and Linguistics , 2006 .

[2]  Teuvo Kohonen,et al.  An introduction to neural computing , 1988, Neural Networks.

[3]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[4]  Gérard Dreyfus,et al.  Single-layer learning revisited: a stepwise procedure for building and training a neural network , 1989, NATO Neurocomputing.

[5]  Shubha Kadambe,et al.  Application of the wavelet transform for pitch detection of speech signals , 1992, IEEE Trans. Inf. Theory.

[6]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[7]  Anna C. Gilbert,et al.  Robust speech recognition using wavelet coefficient features , 2001, IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01..

[8]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[9]  Bernhard Schölkopf,et al.  Support vector learning , 1997 .

[10]  David G. Stork,et al.  Pattern Classification , 1973 .

[11]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Venu Govindaraju,et al.  Guide to OCR for Indic Scripts: Document Recognition and Retrieval , 2009 .

[13]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Omar Farooq,et al.  Wavelet Sub-Band Based Temporal Features for Robust Hindi Phoneme Recognition , 2010, Int. J. Wavelets Multiresolution Inf. Process..

[15]  Donald B. Percival,et al.  The discrete wavelet transform and the scale analysis of the surface properties of sea ice , 1996, IEEE Trans. Geosci. Remote. Sens..

[16]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[17]  Jun Wang,et al.  A support vector machine with a hybrid kernel and minimal Vapnik-Chervonenkis dimension , 2004, IEEE Transactions on Knowledge and Data Engineering.

[18]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[19]  Bruce F. Cockburn,et al.  Efficient architectures for 1-D and 2-D lifting-based wavelet transforms , 2004, IEEE Transactions on Signal Processing.

[20]  Hsin-Hsi Chen,et al.  An Introduction to Natural Language Processing , 1989 .

[21]  Hervé Bourlard,et al.  Subband-based speech recognition , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[22]  R. Lippmann,et al.  An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.

[23]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[24]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[25]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[26]  P. Ladefoged Vowels and consonants : an introduction to the sounds of languages , 2001 .

[27]  S. Mallat A wavelet tour of signal processing , 1998 .

[28]  C. V. Ramamoorthy,et al.  Knowledge and Data Engineering , 1989, IEEE Trans. Knowl. Data Eng..

[29]  Terry Caelli,et al.  On the Representation of Visual Information , 2001, IWVF.

[30]  Pierre Vandergheynst,et al.  Wavelets on Graphs via Spectral Graph Theory , 2009, ArXiv.

[31]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[32]  Abraham Kandel,et al.  Introduction to Pattern Recognition: Statistical, Structural, Neural and Fuzzy Logic Approaches , 1999 .

[33]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[34]  Nello Cristianini,et al.  Large Margin DAGs for Multiclass Classification , 1999, NIPS.

[35]  K. P. Soman,et al.  Insight into Wavelets: From Theory to Practice , 2005 .

[36]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[37]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[38]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[39]  K. Goodman,et al.  Encyclopedia of Language and Linguistics , 2006 .

[40]  Guodong Guo,et al.  Content-based audio classification and retrieval by support vector machines , 2003, IEEE Trans. Neural Networks.

[41]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[42]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[43]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[44]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Sankar K. Pal,et al.  Multilayer perceptron, fuzzy sets, and classification , 1992, IEEE Trans. Neural Networks.

[46]  Min-Chun Yu,et al.  Multi-criteria ABC analysis using artificial-intelligence-based classification techniques , 2011, Expert Syst. Appl..

[47]  G. A Theory for Multiresolution Signal Decomposition : The Wavelet Representation , 2004 .

[48]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[49]  R. Coifman,et al.  Diffusion Wavelets , 2004 .

[50]  Richard Kronland-Martinet,et al.  Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..

[51]  A. Grossmann,et al.  Cycle-octave and related transforms in seismic signal analysis , 1984 .

[52]  David J. Hand,et al.  Discrimination and Classification , 1982 .