A fast and accurate semi-Lagrangian particle level set method

[1]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[2]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[3]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[4]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[5]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[6]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[7]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[8]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[9]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[11]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[12]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[13]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[14]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[15]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[16]  J. Strain Semi-Lagrangian Methods for Level Set Equations , 1999 .

[17]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[18]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[19]  R. Fedkiw,et al.  A numerical method for two-phase flow consisting of separate compressible and incompressible regions , 2000 .

[20]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[21]  J. Strain A Fast Modular Semi-Lagrangian Method for Moving Interfaces , 2000 .

[22]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[23]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[24]  Ronald Fedkiw,et al.  Animation and rendering of complex water surfaces , 2002, ACM Trans. Graph..

[25]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[26]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[27]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[28]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[29]  Ron Kimmel,et al.  Fast Marching Methods , 2004 .