Nucleotide variation in genes involved in wood formation in two pine species.

Nucleotide diversity in eight genes related to wood formation was investigated in two pine species, Pinus pinaster and P. radiata. The nucleotide diversity patterns observed and their properties were compared between the two species according to the specific characteristics of the samples analysed. A lower diversity was observed in P. radiata compared with P. pinaster. In particular, for two genes (Pp1, a glycin-rich protein homolog and CesA3, a cellulose synthase) the magnitude of the reduction of diversity potentially indicates the action of nonneutral factors. For both, particular patterns of nucleotide diversity were observed in P. pinaster (high genetic differentiation for Pp1 and close to zero differentiation associated with positive Tajima's D-value for CesA3). In addition, KORRIGAN, a gene involved in cellulose-hemicellulose assembly, demonstrated a negative Tajima's D-value in P. radiata accompanied by a high genetic differentiation in P. pinaster. The consistency of the results obtained at the nucleotide level, together with the physiological roles of the genes analysed, indicate their potential susceptibility to artificial and/or natural selection.

[1]  J. Gion,et al.  The proteome of maritime pine wood forming tissue , 2005, Proteomics.

[2]  P. Ingvarsson Nucleotide Polymorphism and Linkage Disequilibrium Within and Among Natural Populations of European Aspen (Populus tremula L., Salicaceae) , 2005, Genetics.

[3]  Garth R. Brown,et al.  Nucleotide diversity and linkage disequilibrium in loblolly pine. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Neale,et al.  Association genetics of complex traits in conifers. , 2004, Trends in plant science.

[5]  Garth R. Brown,et al.  Comparative genome and QTL mapping between maritime and loblolly pines , 2003, Molecular Breeding.

[6]  Herman Höfte,et al.  Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microspectroscopy. , 2003, The Plant journal : for cell and molecular biology.

[7]  Gerald A Tuskan,et al.  Identification of quantitative trait loci influencing wood property traits in loblolly pine (Pinus taeda L.). III. QTL Verification and candidate gene mapping. , 2003, Genetics.

[8]  H. Tachida,et al.  DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato). , 2003, Genetics.

[9]  R. Petit,et al.  Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance , 2003, Molecular ecology.

[10]  D. Pot,et al.  Seasonal variation in transcript accumulation in wood-forming tissues of maritime pine (Pinus pinaster Ait.) with emphasis on a cell wall glycine-rich protein , 2003, Planta.

[11]  M. García-Gil,et al.  Nucleotide diversity at two phytochrome loci along a latitudinal cline in Pinus sylvestris , 2003, Molecular ecology.

[12]  P. Cregan,et al.  Single-nucleotide polymorphisms in soybean. , 2003, Genetics.

[13]  Mark Jung,et al.  SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines , 2002, BMC Genetics.

[14]  R. Alía,et al.  Population genetic structure in a Mediterranean pine (Pinus pinaster Ait.): a comparison of allozyme markers and quantitative traits , 2002, Heredity.

[15]  L. Pâques,et al.  Localisation of genomic regions controlling microdensitometric parameters of wood characteristics in hybrid larches , 2002 .

[16]  M. Grabner,et al.  Clonal variation of wood density record of cambium reaction to water deficit in Picea abies (L.) Karst , 2002 .

[17]  G. Moran,et al.  Genomics of Eucalyptus wood traits , 2002 .

[18]  Garth R. Brown,et al.  Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine , 2002 .

[19]  D. Pot,et al.  Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.). , 2002 .

[20]  C. Plomion,et al.  Comparison of genetic diversity estimates within and among populations of maritime pine using chloroplast simple‐sequence repeat and amplified fragment length polymorphism data , 2002, Molecular ecology.

[21]  O. Savolainen,et al.  Low nucleotide diversity at the pal1 locus in the widely distributed Pinus sylvestris. , 2002, Molecular biology and evolution.

[22]  D. Delmer,et al.  Sitosterol-β-glucoside as Primer for Cellulose Synthesis in Plants , 2002, Science.

[23]  A. Stokes,et al.  Wood formation in trees. , 2001, Plant physiology.

[24]  B. Sundberg,et al.  A transcriptional roadmap to wood formation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  F. Salamini,et al.  SNP frequency and allelic haplotype structure of Beta vulgaris expressed genes , 2001, Molecular Breeding.

[26]  Edward S. Buckler,et al.  Dwarf8 polymorphisms associate with variation in flowering time , 2001, Nature Genetics.

[27]  D. Chagné,et al.  Genetic diversity within and among Pinus pinaster populations: comparison between AFLP and microsatellite markers , 2001, Heredity.

[28]  D. Neale,et al.  Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). II. Chemical wood properties , 2000, Theoretical and Applied Genetics.

[29]  E. Lerceteau,et al.  AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study , 2000, Molecular Breeding.

[30]  C. Plomion,et al.  Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster ait.). , 2000, Plant physiology.

[31]  Bruce P. Finney,et al.  Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress , 2000, Nature.

[32]  P. Wilcox,et al.  Multiple-marker mapping of wood density loci in an outbred pedigree of radiata pine , 2000, Theoretical and Applied Genetics.

[33]  R. Sederoff,et al.  Differential expression of genes encoding cell wall proteins in vascular tissues from vertical and bent loblolly pine trees. , 2000, Tree physiology.

[34]  J. Doebley,et al.  The molecular evolution of terminal ear1, a regulatory gene in the genus Zea. , 1999, Genetics.

[35]  S. Strauss,et al.  Nuclear DNA diversity, population differentiation, and phylogenetic relationships in the California closed-cone pines based on RAPD and allozyme markers , 1999 .

[36]  Julio Rozas,et al.  DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis , 1999, Bioinform..

[37]  C. Plomion,et al.  Water-deficit-responsive proteins in maritime pine , 1998, Plant Molecular Biology.

[38]  Samantha Vernhettes,et al.  A plasma membrane‐bound putative endo‐1,4‐β‐D‐glucanase is required for normal wall assembly and cell elongation in Arabidopsis , 1998, The EMBO journal.

[39]  R. Sederoff,et al.  Analysis of xylem formation in pine by cDNA sequencing. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Zivy,et al.  Protein changes in response to progressive water deficit in maize . Quantitative variation and polypeptide identification , 1998, Plant physiology.

[41]  R. Sederoff,et al.  RECENT ADVANCES IN UNDERSTANDING LIGNIN BIOSYNTHESIS. , 1998, Annual review of plant physiology and plant molecular biology.

[42]  G. Cassab,et al.  PLANT CELL WALL PROTEINS. , 1998, Annual review of plant physiology and plant molecular biology.

[43]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[44]  J. Wakeley,et al.  A coalescent estimator of the population recombination rate. , 1997, Genetics.

[45]  R. Sederoff,et al.  Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. , 1996, Genetics.

[46]  N. Bahrman,et al.  Comparison of genetic differentiation in maritime pine (Pinus pinaster Ait.) estimated using isozyme, total protein and terpenic loci , 1995, Heredity.

[47]  C. Durel,et al.  Genomic mapping in Pinus pinaster (maritime pine) using RAPD and protein markers , 1995, Heredity.

[48]  J. Long,et al.  An E-M algorithm and testing strategy for multiple-locus haplotypes. , 1995, American journal of human genetics.

[49]  R. Stettler,et al.  Molecular genetics of growth and development in populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. , 1995, Genetics.

[50]  B. Mangin,et al.  Constructing confidence intervals for QTL location. , 1994, Genetics.

[51]  M. Villar,et al.  Molecular genetics of growth and development in Populus. III. A genetic linkage map of a hybrid poplar composed of RFLP, STS, and RAPD markers , 1994, Theoretical and Applied Genetics.

[52]  R. Newton,et al.  Genome size and environmental factors in the genus Pinus , 1993 .

[53]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[54]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[55]  G. Moran,et al.  The genetic structure and the conservation of the five natural populations of Pinusradiata , 1988 .

[56]  R. Hudson,et al.  Estimating the recombination parameter of a finite population model without selection. , 1987, Genetical research.

[57]  M. Nei Molecular Evolutionary Genetics , 1987 .

[58]  F. Tajima Evolutionary relationship of DNA sequences in finite populations. , 1983, Genetics.

[59]  G. A. Watterson On the number of segregating sites in genetical models without recombination. , 1975, Theoretical population biology.

[60]  R. Grantham Amino Acid Difference Formula to Help Explain Protein Evolution , 1974, Science.

[61]  Y. Waisel,et al.  EFFECTS OF ENVIRONMENT ON RELATIONS BETWEEN EXTENSION AND CAMBIAL GROWTH OF POPULUS EUPHRATICA OLIV. , 1970 .

[62]  R. Finnegan Le Pin Maritime , 1965 .

[63]  K. Holsinger The Neutral Theory of Molecular Evolution. , 2012 .

[64]  David Pot Déterminisme génétique de la qualité du bois chez le pin maritime : du phénotype aux gènes , 2004 .

[65]  P. Faivre-Rampant,et al.  Identification of QTLs controlling growth, chemical and physical wood property traits in Pinus pinaster (Ait.) , 2003 .

[66]  R. Johnson,et al.  Compatibility of breeding for increased wood production and longterm sustainability: the genetic variation of seed orchard seed and associated risks. , 2002 .

[67]  Richard W. Haynes,et al.  Congruent management of multiple resources: proceedings from the Wood Compatibility Initiative workshop. , 2002 .

[68]  A. Karhu Evolution and applications of pine microsatellites , 2001 .

[69]  M. Aguadé Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana. , 2001, Molecular biology and evolution.

[70]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[71]  M. Fagard,et al.  Cell wall mutants , 2000 .

[72]  C. Cahalan,et al.  Spruce and wood quality: Genetic aspects (A review) , 1997 .

[73]  M. Miller,et al.  Native provenances of Pinus radiata in New Zealand: performance and potential. , 1997 .

[74]  P. Cleary,et al.  Differential expression of genes in the , 1996 .

[75]  B. Weir,et al.  Allozyme diversity in plant species. , 1990 .

[76]  P. Baradat,et al.  Le pin maritime Pinus pinaster Ait : biologie et génétique des terpènes pour la connaissance et l'amélioration de l'espèce , 1988 .

[77]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.