Frontiers in Systems Neuroscience Systems Neuroscience

The honeybee standard brain (HSB) serves as an interactive tool for relating morphologies of bee brain neurons and provides a reference system for functional and bibliographical properties (http://www.neurobiologie.fu-berlin.de/beebrain/). The ultimate goal is to document not only the morphological network properties of neurons collected from separate brains, but also to establish a graphical user interface for a neuron-related data base. Here, we review the current methods and protocols used to incorporate neuronal reconstructions into the HSB. Our registration protocol consists of two separate steps applied to imaging data from two-channel confocal microscopy scans: (1) The reconstruction of the neuron, facilitated by an automatic extraction of the neuron's skeleton based on threshold segmentation, and (2) the semi-automatic 3D segmentation of the neuropils and their registration with the HSB. The integration of neurons in the HSB is performed by applying the transformation computed in step (2) to the reconstructed neurons of step (1). The most critical issue of this protocol in terms of user interaction time – the segmentation process – is drastically improved by the use of a model-based segmentation process. Furthermore, the underlying statistical shape models (SSM) allow the visualization and analysis of characteristic variations in large sets of bee brain data. The anatomy of neural networks composed of multiple neurons that are registered into the HSB are visualized by depicting the 3D reconstructions together with semantic information with the objective to integrate data from multiple sources (electrophysiology, imaging, immunocytochemistry, molecular biology). Ultimately, this will allow the user to specify cell types and retrieve their morphologies along with physiological characterizations.

[1]  Rybak Juergen,et al.  Model-based autosegmentation of the central brain of the honeybee, Apis mellifera, using active shape models , 2008 .

[2]  T. Godenschwege,et al.  Invertebrate Synapsins: A Single Gene Codes for Several Isoforms in Drosophila , 1996, The Journal of Neuroscience.

[3]  V. Wigglesworth,et al.  The use of osmium in the fixation and staining of tissues , 1957, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[4]  Jan Felix Evers,et al.  Developmental changes in dendritic shape and synapse location tune single-neuron computations to changing behavioral functions. , 2009, Journal of neurophysiology.

[5]  Thomas Lange,et al.  Shape Constrained Automatic Segmentation of the Liver based on a Heuristic Intensity Model , 2007 .

[6]  Hans Lamecker,et al.  Variational and statistical shape modeling for 3D geometry reconstruction , 2008 .

[7]  R. Menzel,et al.  GABA‐immunoreactive neurons in the mushroom bodies of the honeybee: An electron microscopic study , 2001, The Journal of comparative neurology.

[8]  Joachim Schachtner,et al.  Anisometric brain dimorphism revisited: Implementation of a volumetric 3D standard brain in Manduca sexta , 2009, The Journal of comparative neurology.

[9]  A Maye,et al.  VISUALIZATION, RECONSTRUCTION, AND INTEGRATION OF NEURONAL STRUCTURES IN DIGITAL BRAIN ATLASES , 2006, The International journal of neuroscience.

[10]  R. Menzel,et al.  Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera , 2001, The Journal of comparative neurology.

[11]  R. Menzel,et al.  Three‐dimensional average‐shape atlas of the honeybee brain and its applications , 2005, The Journal of comparative neurology.

[12]  Stanley Heinze,et al.  Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons , 2008, The Journal of comparative neurology.

[13]  Michael Scholz,et al.  New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks , 2004, NeuroImage.

[14]  R. Menzel,et al.  Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. , 2002, Journal of Comparative Physiology A.

[15]  G. Bicker,et al.  Distribution of GABA‐like immunoreactivity in the brain of the honeybee , 1986, The Journal of comparative neurology.

[16]  Hanchuan Peng,et al.  Bioimage informatics: a new area of engineering biology , 2008, Bioinform..

[17]  Kevin C. Daly,et al.  A 4-dimensional representation of antennal lobe output based on an ensemble of characterized projection neurons , 2009, Journal of Neuroscience Methods.

[18]  Hans-Christian Hege,et al.  Model-based autosegmentation of brain structures in the honeybee using statistical shape models , 2007 .

[19]  Hans-Christian Hege,et al.  Automatic Segmentation of the Pelvic Bones from CT Data Based on a Statistical Shape Model , 2008, VCBM.

[20]  Carsten Duch,et al.  Correlative electron and confocal microscopy assessment of synapse localization in the central nervous system of an insect , 2008, Journal of Neuroscience Methods.

[21]  Hans-Christian Hege,et al.  Pipeline for the creation of surface-based averaged brain atlases , 2007 .

[22]  Jochen Singer,et al.  Entwicklung einer Anpassungsstrategie zur Autosegmentierung des Gehirns der Honigbiene Apis mellifera mittels eines statistischen Formmodells , 2008 .

[23]  Hans-Christian Hege,et al.  Ontology-Based Visualization of Hierarchical Neuroanatomical Structures , 2008, VCBM.

[24]  Randolf Menzel,et al.  Response characteristics of vibration‐sensitive interneurons related to Johnston's organ in the honeybee, Apis mellifera , 2009, The Journal of comparative neurology.

[25]  Torsten Rohlfing,et al.  Standardized atlas of the brain of the desert locust, Schistocerca gregaria , 2008, Cell and Tissue Research.

[26]  W. Witthöft,et al.  Absolute anzahl und verteilung der zellen im him der honigbiene , 2004, Zeitschrift für Morphologie der Tiere.

[27]  L. Luo,et al.  Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation , 2007, Cell.

[28]  Arnim Jenett,et al.  The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy , 2006, BMC Bioinformatics.

[29]  Hans-Christian Hege,et al.  A 3D statistical shape model of the pelvic bone for segmentation , 2004, SPIE Medical Imaging.

[30]  Malte Westerhoff,et al.  Efficient visualization and reconstruction of 3D geometric models from neuro-biological confocal microscope scans , 2001 .

[31]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[32]  Cornelius Rosse,et al.  A Reference Ontology for Bioinformatics: The Foundational Model of Anatomy , 2003 .

[33]  Matthias Lienhard,et al.  Aufbau und Analyse eines statistischen Formmodells des Gehirns der Honigbiene Apis Mellifera , 2008 .

[34]  Michael T. Mader,et al.  The Drosophila Standard Brain , 2002, Current Biology.

[35]  J. Mauelshagen,et al.  Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain. , 1993, Journal of neurophysiology.

[36]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[37]  R. Menzel,et al.  Bee brains, B-splines and computational democracy: generating an average shape atlas , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[38]  Randolf Menzel,et al.  Rapid odor processing in the honeybee antennal lobe network , 2009 .

[39]  Thomas Lange,et al.  Automatic segmentation of the liver for preoperative planning of resections. , 2003, Studies in health technology and informatics.

[40]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[41]  Robert Brandt,et al.  The HoneyBee Standard Brain (HSB) – a versatile atlas tool for integrating data and data exchange in the neuroscience community , 2009, BMC Neuroscience.

[42]  M. Hammer An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees , 1993, Nature.

[43]  G. Ascoli,et al.  Computational Neuroanatomy , 2002, Humana Press.

[44]  J F Evers,et al.  Progress in functional neuroanatomy: precise automatic geometric reconstruction of neuronal morphology from confocal image stacks. , 2005, Journal of neurophysiology.

[45]  R. Menzel,et al.  Integrative properties of the Pe1 neuron, a unique mushroom body output neuron. , 1998, Learning & memory.

[46]  Ryohei Kanzaki,et al.  Reconstructing the Population Activity of Olfactory Output Neurons that Innervate Identifiable Processing Units , 2008, Frontiers in neural circuits.

[47]  K. Obermayer,et al.  Correction methods for three-dimensional reconstructions from confocal images: I. tissue shrinking and axial scaling , 2000, Journal of Neuroscience Methods.

[48]  Stefan Zachow,et al.  Automatic Extraction of Mandibular Nerve and Bone from Cone-Beam CT Data , 2009, MICCAI.

[49]  R. Menzel Searching for the memory trace in a mini-brain, the honeybee. , 2001, Learning & memory.

[50]  B. Grünewald,et al.  Morphology of feedback neurons in the mushroom body of the honeybee, Apis mellifera , 1999, The Journal of comparative neurology.

[51]  Torsten Rohlfing,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[52]  Randolf Menzel,et al.  Digital, Three-dimensional Average Shaped Atlas of the Heliothis Virescens Brain with Integrated Gustatory and Olfactory Neurons , 2009, Frontiers in systems neuroscience.

[53]  R. Menzel,et al.  Learning-Related Plasticity in PE1 and Other Mushroom Body-Extrinsic Neurons in the Honeybee Brain , 2007, The Journal of Neuroscience.

[54]  Anja Kuß,et al.  Using Ontologies for the Visualization of Hierarchical Neuroanatomical Structures , 1970 .

[55]  Larry W. Swanson,et al.  BAMS Neuroanatomical Ontology: Design and Implementation , 2008, Frontiers Neuroinformatics.