Low Dimensional Simplex Evolution--A Hybrid Heuristic for Global Optimization

In this paper, a new real-coded evolutionary algorithm - low dimensional simplex evolution (LDSE) for global optimization is proposed. It is a hybridization of two well known heuristics, the differential evolution (DE) and the Nelder-Mead method. LDSE takes the idea of DE to randomly select parents from the population and perform some operations with them to generate new individuals. Instead of using the evolutionary operators of DE such as mutation and cross-over, we introduce operators based on the simplex method, which makes the algorithm more systematic and parameter-free. The proposed algorithm is very easy to implement, and its efficiency has been studied on an extensive testbed of 50 test problems from M.M. Ali et al. Numerical results show that the new algorithm outperforms DE in terms of number of function evaluations (nfe) and percentage of success (ps).

[1]  K. R. Ramakrishnan,et al.  Vector quantization of excitation gains in speech coding , 2001, Signal Process..

[2]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[3]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[4]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[5]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[6]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[7]  J. Vaisey,et al.  Simulated annealing and codebook design , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[8]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[9]  Bachir Boudraa,et al.  Optimized trellis coded vector quantization of LSF parameters, application to the 4.8kbps FS1016 speech coder , 2005, Signal Process..

[10]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[11]  János D. Pintér,et al.  Global optimization in action , 1995 .

[12]  Martin H. Gutknecht,et al.  A Brief Introduction to Krylov Space Methods for Solving Linear Systems , 2007 .

[13]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[14]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[15]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[16]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[17]  Jean-Michel Renders,et al.  Hybridizing genetic algorithms with hill-climbing methods for global optimization: two possible ways , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[18]  A. Neumaier Acta Numerica 2004: Complete search in continuous global optimization and constraint satisfaction , 2004 .

[19]  A. A. Zhigli︠a︡vskiĭ,et al.  Stochastic Global Optimization , 2007 .

[20]  V. Delport,et al.  Genetic algorithm for codebook design in vector quantisation , 1995 .

[21]  János D. Pintér,et al.  Nonlinear optimization with GAMS /LGO , 2007, J. Glob. Optim..

[22]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[23]  Jeng-Shyang Pan,et al.  VQ codebook design using genetic algorithms , 1995 .

[24]  Jeng-Shyang Pan,et al.  Vector quantization based on genetic simulated annealing , 2001, Signal Process..

[25]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[26]  M. M. Ali,et al.  A numerical study of some modified differential evolution algorithms , 2006, Eur. J. Oper. Res..

[27]  Thomas R. Fischer,et al.  Low-complexity predictive trellis-coded quantization of speech line spectral frequencies , 2004, IEEE Transactions on Signal Processing.

[28]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[29]  M. Fukushima,et al.  Minimizing multimodal functions by simplex coding genetic algorithm , 2003 .

[30]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.