Methocarbamol blocks muscular Nav1.4 channels and decreases isometric force of mouse muscles

The muscle relaxant methocarbamol is widely used for the treatment of muscle spasms and pain syndromes. To elucidate molecular mechanisms of its action, we studied its influence on neuromuscular transmission, on isometric muscle force, and on voltage‐gated Na+ channels.

[1]  M. Salari,et al.  Comparison of skin traction, pressure, and rapid muscle release with conventional method on intramuscular injection pain: A randomized clinical trial , 2018, Journal of education and health promotion.

[2]  A. Dahan,et al.  Recent advances in neuromuscular block during anesthesia , 2018, F1000Research.

[3]  D. Mougiakakos,et al.  In mammalian skeletal muscle, phosphorylation of TOMM22 by protein kinase CSNK2/CK2 controls mitophagy , 2018, Autophagy.

[4]  M. Überall,et al.  Wirksamkeit und Verträglichkeit von Methocarbamol bei muskulär bedingten subakuten Kreuz-/Rückenschmerzen , 2017, MMW - Fortschritte der Medizin.

[5]  G. Müller-Schwefe,et al.  [Real-life efficacy and tolerability of methocarbamol in patients suffering from refractory muscle-related low/back pain - Results of a health care research project based on data from the German pain practice registry]. , 2017, MMW Fortschritte der Medizin.

[6]  A. Patanwala,et al.  Effect of Methocarbamol on Acute Pain After Traumatic Injury , 2017, American journal of therapeutics.

[7]  Kylie A. Williams,et al.  Efficacy and tolerability of muscle relaxants for low back pain: Systematic review and meta‐analysis , 2017, European journal of pain.

[8]  L. Mei,et al.  LAP proteins are localized at the post‐synaptic membrane of neuromuscular junctions and appear to modulate synaptic morphology and transmission , 2016, Journal of neurochemistry.

[9]  O. Emrich,et al.  Methocarbamol bei akuten Rückenschmerzen , 2015, MMW - Fortschritte der Medizin.

[10]  K. Milachowski,et al.  [Methocarbamol in acute low back pain. A randomized double-blind controlled study]. , 2015, MMW Fortschritte der Medizin.

[11]  E. Füchtbauer,et al.  Lack of the serum- and glucocorticoid-inducible kinase SGK1 improves muscle force characteristics and attenuates fibrosis in dystrophic mdx mouse muscle , 2015, Pflügers Archiv - European Journal of Physiology.

[12]  Corey J Witenko,et al.  Considerations for the appropriate use of skeletal muscle relaxants for the management of acute low back pain. , 2014, P & T : a peer-reviewed journal for formulary management.

[13]  F. Bezanilla,et al.  Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels , 2013, The Journal of general physiology.

[14]  R. Brand 50 Years Ago in CORR: A Clinical Study of 46 Males With Low-Back Disorders Treated with Methocarbamol Andres Grisolia MD and J.E.M. Thomson CORR 1959;13:299–304 , 2009, Clinical orthopaedics and related research.

[15]  A. Grisolia,et al.  A Clinical Study of 46 Males With Low-Back Disorders Treated with Methocarbamol , 2009 .

[16]  C. Young,et al.  Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A , 2008, The Journal of physiology.

[17]  S. See,et al.  Skeletal Muscle Relaxants , 2008, Pharmacotherapy.

[18]  Roger Chou,et al.  Comparative efficacy and safety of skeletal muscle relaxants for spasticity and musculoskeletal conditions: a systematic review. , 2004, Journal of pain and symptom management.

[19]  F. Wappler,et al.  Dantrolene – A review of its pharmacology, therapeutic use and new developments , 2004, Anaesthesia.

[20]  H. Brinkmeier,et al.  Local anaesthetic-like effect of interleukin-2 on muscular Na+ channels: no evidence for involvement of the IL-2 receptor , 2004, Pflügers Archiv.

[21]  S. J. Wood,et al.  Safety factor at the neuromuscular junction , 2001, Progress in Neurobiology.

[22]  J. Faulkner,et al.  Force and power output of diaphragm muscle strips from mdx and control mice after clenbuterol treatment , 2001, Neuromuscular Disorders.

[23]  H. Keller,et al.  Cellular uptake and efficacy of antisense oligonucleotides against RNAs of two Na(+) channel isoforms. , 2000, The Journal of pharmacology and experimental therapeutics.

[24]  P. Mackenzie,et al.  High safety factor for action potential conduction along axons but not dendrites of cultured hippocampal and cortical neurons. , 1998, Journal of neurophysiology.

[25]  Marc S. Schneider Pain Reduction in Breast Augmentation Using Methocarbamol , 1997, Aesthetic Plastic Surgery.

[26]  H. Brinkmeier,et al.  Excitatory sodium currents of NH15-CA2 neuroblastoma x glioma hybrid cells are differently affected by interleukin-2 and interleukin-1β , 1996, Pflügers Archiv.

[27]  H. J. Waldman Centrally acting skeletal muscle relaxants and associated drugs. , 1994, Journal of pain and symptom management.

[28]  M. B. Katirji,et al.  Intravenous methocarbamol in the treatment of stiff-man syndrome. , 1993, Muscle & nerve.

[29]  J. Plomp,et al.  Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in alpha‐bungarotoxin‐treated rats. , 1992, The Journal of physiology.

[30]  R. Griffiths,et al.  Evaluation of the abuse potential of methocarbamol. , 1989, The Journal of pharmacology and experimental therapeutics.

[31]  J. Faulkner,et al.  Contractile properties of skeletal muscles from young, adult and aged mice. , 1988, The Journal of physiology.

[32]  R. Obach,et al.  Pharmacokinetics and bioavailability of methocarbamol in rats , 1988, Biopharmaceutics & drug disposition.

[33]  D. Rw,et al.  Relief of acute musculoskeletal symptoms with intravenous methocarbamol (robaxin injectable): a placebo-controlled study. , 1976 .

[34]  R. Dent,et al.  Relief of acute musculoskeletal symptoms with intravenous methocarbamol (robaxin injectable): a placebo-controlled study. , 1976, Current therapeutic research, clinical and experimental.

[35]  E. Valtonen A double-blind trial of methocarbamol versus placebo in painful muscle spasm. , 1975, Current medical research and opinion.

[36]  M. Shapero,et al.  A comparative study of the effect of some centrally acting skeletal muscle relaxants in mice , 1974, The Journal of pharmacy and pharmacology.

[37]  C. Raper,et al.  Mephenesin, methocarbamol, chlordiazepoxide and diazepam: actions on spinal reflexes and ventral root potentials , 1970, British journal of pharmacology.

[38]  C. Raper,et al.  Some studies on peripheral actions of mephenesin, methocarbamol and diazepam , 1968, British journal of pharmacology.

[39]  W. B. Lewis Use of methocarbamol in orthopedics. , 1959, California medicine.

[40]  Little Jm,et al.  A PHARMACOLOGIC COMPARISON OF METHOCARBAMOL (AHR-85), THE MONOCARBAMATE OF 3-(o-METHOXYPHENOXY)-1,2-PROPANEDIOL WITH CHEMICALLY RELATED INTERNEURONAL DEPRESSANT DRUGS , 1958 .

[41]  E. B. Truitt,et al.  A pharmacologic comparison of methocarbamol (AHR-85), the monocarbamate of 3-(o-methoxyphenoxy)-1,2-propanediol with chemically related interneuronal depressant drugs. , 1958, The Journal of pharmacology and experimental therapeutics.

[42]  A. W. Liley,et al.  An investigation of spontaneous activity at the neuromuscular junction of the rat , 1956, The Journal of physiology.