Differential tracking with a kernel-based region covariance descriptor

The covariance descriptor has received an increasing amount of interest in visual tracking. However, the conventional covariance tracking algorithms fail to estimate both the scale and orientation of an object. In this paper, we present a kernel-based region covariance descriptor to address this issue. An affine kernel function is incorporated to the covariance matrix to effectively control the correlations among extracted features inside the object region. Under the Log-Euclidean Riemannian metric, we construct a region similarity measure function that describes the relationship between the candidate and a given appearance template. The tracking task is then implemented by minimizing the similarity measure, in which the gradient descent method is utilized to iteratively optimize affine transformation parameters. In addition, the template is dynamically updated by computing the geometric mean of covariance matrices in Riemannian manifold for adapting to the appearance changes of the object over time. Experimental results compared with several relevant tracking methods demonstrate the good performance of the proposed algorithm under challenging conditions.

[1]  Hanqing Lu,et al.  Probabilistic tracking on Riemannian manifolds , 2008, 2008 19th International Conference on Pattern Recognition.

[2]  Huchuan Lu,et al.  Bag of Features Tracking , 2010, 2010 20th International Conference on Pattern Recognition.

[3]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[4]  Stanley T. Birchfield,et al.  Spatiograms versus histograms for region-based tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[5]  Xiaoqin Zhang,et al.  Visual tracking via incremental Log-Euclidean Riemannian subspace learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Bo Ma,et al.  Learning distance metric for object contour tracking , 2012, Pattern Analysis and Applications.

[7]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Hanqing Lu,et al.  Real-time visual tracking via Incremental Covariance Tensor Learning , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[9]  A. Tyagi,et al.  Steepest Descent For Efficient Covariance Tracking , 2008, 2008 IEEE Workshop on Motion and video Computing.

[10]  Xuelong Li,et al.  Gabor-Based Region Covariance Matrices for Face Recognition , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[11]  Min Yang,et al.  Robust object tracking via online multiple instance metric learning , 2013, 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW).

[12]  Ben J. A. Kröse,et al.  An EM-like algorithm for color-histogram-based object tracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Yangsheng Xu,et al.  Region covariance based probabilistic tracking , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[14]  Weimin Huang,et al.  Affine object tracking with kernel-based spatial-color representation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[15]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[16]  Yanning Zhang,et al.  Part-Based Visual Tracking with Online Latent Structural Learning , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Min Yang,et al.  Metric Learning Based Structural Appearance Model for Robust Visual Tracking , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[18]  B. Kröse,et al.  An EM-like algorithm for color-histogram-based object tracking , 2004, CVPR 2004.

[19]  Jorge Batista,et al.  Multi-object tracking using an adaptive transition model particle filter with region covariance data association , 2008, 2008 19th International Conference on Pattern Recognition.

[20]  Min Yang,et al.  Online-Learning Structural Appearance Model for Robust Visual Tracking , 2013, IScIDE.

[21]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[22]  Wen Gao,et al.  Academy of Sciences, , 2022 .

[23]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[24]  Ming-Hsuan Yang,et al.  Online visual tracking with histograms and articulating blocks , 2010, Comput. Vis. Image Underst..

[25]  Min Yang,et al.  Landmark-Based Inductive Model for Robust Discriminative Tracking , 2014, ACCV.

[26]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[27]  Pei Li,et al.  A variational method for contour tracking via covariance matching , 2012, Science China Information Sciences.

[28]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[29]  Fatih Murat Porikli,et al.  Learning on lie groups for invariant detection and tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Min Yang,et al.  Coupling Semi-supervised Learning and Example Selection for Online Object Tracking , 2014, ACCV.

[31]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Huchuan Lu,et al.  Visual Tracking via Discriminative Sparse Similarity Map , 2014, IEEE Transactions on Image Processing.

[33]  Patricio A. Vela,et al.  Non-rigid object localization and segmentation using eigenspace representation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[34]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[35]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Alper Yilmaz,et al.  Kernel-based object tracking using asymmetric kernels with adaptive scale and orientation selection , 2011, Machine Vision and Applications.

[38]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[39]  Jwu-Sheng Hu,et al.  A spatial-color mean-shift object tracking algorithm with scale and orientation estimation , 2008, Pattern Recognit. Lett..

[40]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..