On the Mechanistic Origins of Toughness in Bone

One of the most intriguing protein materials found in nature is bone, a material composed of assemblies of tropocollagen molecules and tiny hydroxyapatite mineral crystals that form an extremely tough, yet lightweight, adaptive and multifunctional material. Bone has evolved to provide structural support to organisms, and therefore its mechanical properties are of great physiological relevance. In this article, we review the structure and properties of bone, focusing on mechanical deformation and fracture behavior from the perspective of the multidimensional hierarchical nature of its structure. In fact, bone derives its resistance to fracture with a multitude of deformation and toughening mechanisms at many size scales ranging from the nanoscale structure of its protein molecules to the macroscopic physiological scale.

[1]  H. Möhwald,et al.  Ultrasonic Fabrication of Metallic Nanomaterial and Nanoalloys , 2010 .

[2]  B. Derby Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution , 2010 .

[3]  G. Pharr,et al.  The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations , 2010 .

[4]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[5]  R O Ritchie,et al.  Mechanistic aspects of the fracture toughness of elk antler bone. , 2010, Acta biomaterialia.

[6]  Markus J Buehler,et al.  Alport syndrome mutations in type IV tropocollagen alter molecular structure and nanomechanical properties. , 2009, Journal of structural biology.

[7]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[8]  Markus J. Buehler,et al.  Hierarchical Structure Controls Nanomechanical Properties of Vimentin Intermediate Filaments , 2009, PloS one.

[9]  R. Ritchie,et al.  Mixed-mode fracture of human cortical bone. , 2009, Biomaterials.

[10]  A. Redaelli,et al.  Molecular and mesoscale mechanisms of osteogenesis imperfecta disease in collagen fibrils. , 2009, Biophysical journal.

[11]  Markus J. Buehler,et al.  Alpha-Helical Protein Networks Are Self-Protective and Flaw-Tolerant , 2009, PloS one.

[12]  Paul K. Hansma,et al.  Plasticity and toughness in bone , 2009 .

[13]  P. Fratzl,et al.  Inhomogeneous fibril stretching in antler starts after macroscopic yielding: indication for a nanoscale toughening mechanism. , 2009, Bone.

[14]  R. Ritchie,et al.  On the Fracture Toughness of Advanced Materials , 2009 .

[15]  Alberto Redaelli,et al.  Deformation rate controls elasticity and unfolding pathway of single tropocollagen molecules. , 2009, Journal of the mechanical behavior of biomedical materials.

[16]  Markus J Buehler,et al.  Deformation and failure of protein materials in physiologically extreme conditions and disease. , 2009, Nature materials.

[17]  J. McKittrick,et al.  Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis). , 2009, Acta biomaterialia.

[18]  Joanna Aizenberg,et al.  Biological and Biomimetic Materials , 2009 .

[19]  Alberto Redaelli,et al.  Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains , 2008, Protein science : a publication of the Protein Society.

[20]  Markus J Buehler,et al.  Strength limit of entropic elasticity in beta-sheet protein domains. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Markus J. Buehler,et al.  Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture , 2008 .

[22]  R. Ritchie,et al.  Measurement of the toughness of bone: a tutorial with special reference to small animal studies. , 2008, Bone.

[23]  R O Ritchie,et al.  The true toughness of human cortical bone measured with realistically short cracks. , 2008, Nature materials.

[24]  Markus J Buehler,et al.  Asymptotic strength limit of hydrogen-bond assemblies in proteins at vanishing pulling rates. , 2008, Physical review letters.

[25]  Christine Ortiz,et al.  Bioinspired Structural Materials , 2008, Science.

[26]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[27]  Markus J. Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of α-helical and β-sheet protein domains , 2007, Proceedings of the National Academy of Sciences.

[28]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[29]  Markus J. Buehler,et al.  Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization , 2007 .

[30]  Markus J Buehler,et al.  Entropic elasticity controls nanomechanics of single tropocollagen molecules. , 2007, Biophysical journal.

[31]  David Taylor,et al.  Living with cracks: damage and repair in human bone. , 2007, Nature materials.

[32]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[33]  J. J. Mecholsky,et al.  How tough is bone? Application of elastic-plastic fracture mechanics to bone. , 2007, Bone.

[34]  M. Burghammer,et al.  Scanning texture analysis of lamellar bone using microbeam synchrotron X-ray radiation , 2007 .

[35]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[36]  Franz-Josef Ulm,et al.  Nanogranular origins of the strength of bone. , 2006, Nano letters.

[37]  Mehdi Balooch,et al.  Role of microstructure in the aging-related deterioration of the toughness of human cortical bone , 2006 .

[38]  Markus J. Buehler,et al.  Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly , 2006 .

[39]  R O Ritchie,et al.  Re-evaluating the toughness of human cortical bone. , 2006, Bone.

[40]  M. Burghammer,et al.  Spiral twisting of fiber orientation inside bone lamellae , 2006, Biointerphases.

[41]  Georg Schitter,et al.  Sacrificial bonds and hidden length: unraveling molecular mesostructures in tough materials. , 2006, Biophysical journal.

[42]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[43]  Himadri S. Gupta,et al.  Nanoscale deformation mechanisms in bone. , 2005, Nano letters.

[44]  E. Vajda,et al.  Cement lines of secondary osteons in human bone are not mineral-deficient: new data in a historical perspective. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[45]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[46]  John D. Currey,et al.  Hierarchies in Biomineral Structures , 2005, Science.

[47]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[48]  R O Ritchie,et al.  Fracture in human cortical bone: local fracture criteria and toughening mechanisms. , 2005, Journal of biomechanics.

[49]  R O Ritchie,et al.  Effect of aging on the toughness of human cortical bone: evaluation by R-curves. , 2004, Bone.

[50]  Kai-Nan An,et al.  Stretching type II collagen with optical tweezers. , 2004, Journal of biomechanics.

[51]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[52]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[53]  Iwona Jasiuk,et al.  SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone. , 2004, Bone.

[54]  Deepak Vashishth,et al.  Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. , 2004, Journal of biomechanics.

[55]  R O Ritchie,et al.  On the origin of the toughness of mineralized tissue: microcracking or crack bridging? , 2004, Bone.

[56]  Fran Adar,et al.  Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. , 2004, Bone.

[57]  R. Heaney,et al.  Is the paradigm shifting? , 2003, Bone.

[58]  D. Fyhrie,et al.  A rate-dependent microcrack-bridging model that can explain the strain rate dependency of cortical bone apparent yield strength. , 2003, Journal of biomechanics.

[59]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[61]  S. Stover,et al.  Equine cortical bone exhibits rising R-curve fracture mechanics. , 2003, Journal of biomechanics.

[62]  K. Kadler,et al.  Collagen fibril biosynthesis in tendon: a review and recent insights. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[63]  C. M. Agrawal,et al.  Age-related changes in the collagen network and toughness of bone. , 2002, Bone.

[64]  M. Swain,et al.  Fracture toughness of bovine bone: influence of orientation and storage media. , 2001, Biomaterials.

[65]  C. M. Agrawal,et al.  The role of collagen in determining bone mechanical properties , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[66]  T. Norman,et al.  Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness , 2001, Journal of materials science. Materials in medicine.

[67]  George Jeronimidis,et al.  Chapter 1 - Structure-Property Relationships in Biological Materials , 2000 .

[68]  C. M. Agrawal,et al.  Microstructural heterogeneity and the fracture toughness of bone. , 2000, Journal of biomedical materials research.

[69]  Y. Yeni,et al.  Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. , 2000, Journal of biomedical materials research.

[70]  D Vashishth,et al.  Contribution, development and morphology of microcracking in cortical bone during crack propagation. , 2000, Journal of biomechanics.

[71]  Y. Yeni,et al.  Fracture toughness is dependent on bone location--a study of the femoral neck, femoral shaft, and the tibial shaft. , 2000, Journal of biomedical materials research.

[72]  J. Currey The design of mineralised hard tissues for their mechanical functions. , 1999, The Journal of experimental biology.

[73]  R. Ritchie Mechanisms of fatigue-crack propagation in ductile and brittle solids , 1999 .

[74]  G. Pharr,et al.  Variations in the individual thick lamellar properties within osteons by nanoindentation. , 1999, Bone.

[75]  S. Weiner,et al.  Lamellar bone: structure-function relations. , 1999, Journal of structural biology.

[76]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[77]  Guy Riddihough,et al.  Structure of collagen , 1998, Nature Structural Biology.

[78]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[79]  C. M. Agrawal,et al.  Changes in the fracture toughness of bone may not be reflected in its mineral density, porosity, and tensile properties. , 1998, Bone.

[80]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[81]  P Zioupos,et al.  The effects of ageing and changes in mineral content in degrading the toughness of human femora. , 1997, Journal of biomechanics.

[82]  D Vashishth,et al.  Crack growth resistance in cortical bone: concept of microcrack toughening. , 1997, Journal of biomechanics.

[83]  P. Fratzl,et al.  Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. , 1997, The Journal of clinical investigation.

[84]  M. Marko,et al.  Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. , 1996, Journal of structural biology.

[85]  J. A. Chapman,et al.  Collagen fibril formation. , 1996, The Biochemical journal.

[86]  B F McEwen,et al.  Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography , 1996, Microscopy research and technique.

[87]  G Jeronimidis,et al.  Mechanics of Biological Materials and Structures: Nature's Lessons for the Engineer , 1995 .

[88]  D Vashishth,et al.  Fracture toughness of human bone under tension. , 1995, Journal of biomechanics.

[89]  P Zioupos,et al.  An examination of the micromechanics of failure of bone and antler by acoustic emission tests and Laser Scanning Confocal Microscopy. , 1994, Medical engineering & physics.

[90]  Peter Zioupos,et al.  The extent of microcracking and the morphology of microcracks in damaged bone , 1994, Journal of Materials Science.

[91]  R. M. Cannon,et al.  Mechanics and mechanisms of crack growth at or near ceramic-metal interfaces: interface engineering strategies for promoting toughness , 1993 .

[92]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[93]  M. Arakawa,et al.  [Molecular genetics of Alport syndrome]. , 1992, Nihon rinsho. Japanese journal of clinical medicine.

[94]  P. Fratzl,et al.  Mineral crystals in calcified tissues: A comparative study by SAXS , 1992, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[95]  G. Kiebzak Age-related bone changes , 1991, Experimental Gerontology.

[96]  Klaus Klaushofer,et al.  Nucleation and growth of mineral crystals in bone studied by small-angle X-ray scattering , 1991, Calcified Tissue International.

[97]  A. Evans Perspective on the Development of High‐Toughness Ceramics , 1990 .

[98]  P. Haghighi,et al.  Structure, function and adaptation of compact bone , 1989, Skeletal Radiology.

[99]  R. Ritchie Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding☆ , 1988 .

[100]  C. Slemenda,et al.  Age and bone mass as predictors of fracture in a prospective study. , 1988, The Journal of clinical investigation.

[101]  M. Giraud‐Guille Twisted plywood architecture of collagen fibrils in human compact bone osteons , 1988, Calcified Tissue International.

[102]  A. S. Posner The Mineral of Bone , 1985, Clinical orthopaedics and related research.

[103]  H. Mook,et al.  Neutron diffraction studies of collagen in fully mineralized bone. , 1985, Journal of molecular biology.

[104]  K. Kivirikko,et al.  Heritable diseases of collagen. , 1984, The New England journal of medicine.

[105]  M. Glimcher,et al.  X-ray diffraction radial distribution function studies on bone mineral and synthetic calcium phosphates , 1984 .

[106]  M. Glimcher Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[107]  Anthony G. Evans,et al.  Crack deflection processes—I. Theory , 1983 .

[108]  J. Rice,et al.  Slightly curved or kinked cracks , 1980 .

[109]  A. Ascenzi,et al.  Orientation of apatite in single osteon samples as studied by pole figures , 1979, Calcified Tissue International.

[110]  Ritchiea Mechanistic aspects of fracture and R ‐ curve behavior in elk antler bone , 2009 .

[111]  M. Buehler Nanomechanics of collagen fibrils under varying cross-link densities: atomistic and continuum studies. , 2008, Journal of the mechanical behavior of biomedical materials.

[112]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[113]  Jeffrey A Platt,et al.  Evaluation of fracture toughness of human dentin using elastic-plastic fracture mechanics. , 2008, Journal of biomechanics.

[114]  Markus J Buehler,et al.  Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of alpha-helical and beta-sheet protein domains. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Paul Roschger,et al.  From brittle to ductile fracture of bone , 2006, Nature materials.

[116]  John D Currey,et al.  Materials science. Hierarchies in biomineral structures. , 2005, Science.

[117]  R O Ritchie,et al.  Mechanistic aspects of fracture and R-curve behavior in human cortical bone. , 2005, Biomaterials.

[118]  D Vashishth,et al.  Experimental validation of a microcracking-based toughening mechanism for cortical bone. , 2003, Journal of biomechanics.

[119]  D. Taylor.,et al.  9.02 – Failure Processes in Hard and Soft Tissues , 2003 .

[120]  K. Tamura,et al.  Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A , 2001 .

[121]  W. Grellmann New Developments in Toughness Evaluation of Polymers and Compounds by Fracture Mechanics , 2001 .

[122]  Manuel Elices,et al.  Structural biological materials : design and structure-property relationships , 2000 .

[123]  P Zioupos,et al.  Changes in the stiffness, strength, and toughness of human cortical bone with age. , 1998, Bone.

[124]  A. Rees,et al.  Goodpasture's disease and Alport's syndromes. , 1996, Annual review of medicine.

[125]  Rees Aj,et al.  GOODPASTURE'S DISEASE AND ALPORT'S SYNDROMES , 1996 .

[126]  D J Prockop,et al.  Collagens: molecular biology, diseases, and potentials for therapy. , 1995, Annual review of biochemistry.

[127]  D. Parry,et al.  An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age. , 1989, Connective tissue research.

[128]  D B Burr,et al.  Composition of the cement line and its possible mechanical role as a local interface in human compact bone. , 1988, Journal of biomechanics.

[129]  W. Bonfield,et al.  Advances in the fracture mechanics of cortical bone. , 1987, Journal of biomechanics.

[130]  Joon B. Park Structure-Property Relationships of Biological Materials , 1979 .

[131]  J. Currey,et al.  Mechanical properties of bone tissues with greatly differing functions. , 1979, Journal of biomechanics.

[132]  J. Currey,et al.  Changes in the impact energy absorption of bone with age. , 1979, Journal of biomechanics.

[133]  J. Knott,et al.  Fundamentals of Fracture Mechanics , 2008 .

[134]  P. Esposito,et al.  Osteogenesis Imperfecta. , 1928, Proceedings of the Royal Society of Medicine.