Analyzing and improving maximal attainable accuracy in the communication hiding pipelined BiCGStab method
暂无分享,去创建一个
[1] Samuel H. Fuller,et al. Computing Performance: Game Over or Next Level? , 2011, Computer.
[2] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.
[3] Siegfried Cools,et al. Numerical analysis of the maximal attainable accuracy in communication hiding pipelined Conjugate Gradient methods , 2018, 1804.02962.
[4] Wim Vanroose,et al. The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems , 2016, Parallel Comput..
[5] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[6] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[7] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[8] Gerard L. G. Sleijpen,et al. BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.
[9] Jack J. Dongarra,et al. Improving Performance of GMRES by Reducing Communication and Pipelining Global Collectives , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
[10] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[11] Laurence T. Yang,et al. The improved BiCG method for large and sparse linear systems on parallel distributed memory architectures , 2002, Proceedings 16th International Parallel and Distributed Processing Symposium.
[12] Lexing Ying,et al. Sweeping Preconditioner for the Helmholtz Equation: Moving Perfectly Matched Layers , 2010, Multiscale Model. Simul..
[13] Edmond Chow,et al. Fine-Grained Parallel Incomplete LU Factorization , 2015, SIAM J. Sci. Comput..
[14] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[15] John Shalf,et al. The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..
[16] Gerard L. G. Sleijpen,et al. Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.
[17] James Demmel,et al. Avoiding Communication in Nonsymmetric Lanczos-Based Krylov Subspace Methods , 2013, SIAM J. Sci. Comput..
[18] Barry F. Smith,et al. Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .
[19] Zdenek Strakos,et al. Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.
[20] Anthony T. Chronopoulos,et al. Block s‐step Krylov iterative methods , 2010, Numer. Linear Algebra Appl..
[21] J. Dongarra,et al. HPCG Benchmark: a New Metric for Ranking High Performance Computing Systems∗ , 2015 .
[22] Gene H. Golub,et al. Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.
[23] Zdenek Strakos. Effectivity and optimizing of algorithms and programs on the host-computer/array-processor system , 1987, Parallel Comput..
[24] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.
[25] L.T. Yang,et al. The improved BiCGStab method for large and sparse unsymmetric linear systems on parallel distributed memory architectures , 2002, Fifth International Conference on Algorithms and Architectures for Parallel Processing, 2002. Proceedings..
[26] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[27] Gerard L. G. Sleijpen,et al. Differences in the Effects of Rounding Errors in Krylov Solvers for Symmetric Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[28] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[29] William Gropp,et al. Scalable Non-blocking Preconditioned Conjugate Gradient Methods , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.
[30] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[31] Å. Björck. A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations , 1988 .
[32] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[33] E. F. DAzevedo,et al. Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors , 1992 .
[34] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[35] Matthew G. Knepley,et al. A stochastic performance model for pipelined Krylov methods , 2016, Concurr. Comput. Pract. Exp..
[36] Jocelyne Erhel,et al. Varying the s in Your s-step GMRES , 2018 .
[37] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[38] Anthony T. Chronopoulos. s-Step Iterative Methods for (Non) Symmetric (In) Definite Linear Systems , 1989, PPSC.
[39] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[40] H. V. der. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000 .
[41] James Demmel,et al. Parallel numerical linear algebra , 1993, Acta Numerica.
[42] Jocelyne Erhel,et al. A parallel GMRES version for general sparse matrices. , 1995 .
[43] L.T. Yang,et al. The improved CGS method for large and sparse linear systems on bulk synchronous parallel architectures , 2002, Fifth International Conference on Algorithms and Architectures for Parallel Processing, 2002. Proceedings..
[44] Sascha M. Schnepp,et al. Pipelined, Flexible Krylov Subspace Methods , 2015, SIAM J. Sci. Comput..
[45] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[46] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[47] Wim Vanroose,et al. Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines , 2013, SIAM J. Sci. Comput..
[48] Cornelis Vuik,et al. On a Class of Preconditioners for Solving the Helmholtz Equation , 2003 .
[49] Laura Grigori,et al. Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication , 2016, SIAM J. Matrix Anal. Appl..
[50] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[51] Emmanuel Agullo,et al. Analyzing the Effect of Local Rounding Error Propagation on the Maximal Attainable Accuracy of the Pipelined Conjugate Gradient Method , 2016, SIAM J. Matrix Anal. Appl..
[52] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[53] Yvan Notay,et al. On the convergence rate of the conjugate gradients in presence of rounding errors , 1993 .
[54] Qiang Ye,et al. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..
[55] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[56] Marc Casas,et al. Iteration-fusing conjugate gradient , 2017, ICS.
[57] Miroslav Tuma,et al. The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology , 2018, SIAM J. Sci. Comput..
[58] Wim Vanroose,et al. Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm , 2014, Parallel Comput..
[59] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[60] Anthony T. Chronopoulos,et al. Parallel Iterative S-Step Methods for Unsymmetric Linear Systems , 1996, Parallel Comput..
[61] Qiang Ye,et al. Analysis of the finite precision bi-conjugate gradient algorithm for nonsymmetric linear systems , 2000, Math. Comput..
[62] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[63] H. V. D. Vorst,et al. Reducing the effect of global communication in GMRES( m ) and CG on parallel distributed memory computers , 1995 .
[64] Y. Saad,et al. Practical Use of Some Krylov Subspace Methods for Solving Indefinite and Nonsymmetric Linear Systems , 1984 .
[65] Gene H. Golub,et al. Matrix computations , 1983 .
[66] Emmanuel Agullo,et al. Hard Faults and Soft-Errors: Possible Numerical Remedies in Linear Algebra Solvers , 2016, VECPAR.
[67] James Demmel,et al. A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods , 2014, SIAM J. Matrix Anal. Appl..
[68] Jeffrey Cornelis,et al. The Communication-Hiding Conjugate Gradient Method with Deep Pipelines , 2018, ArXiv.
[69] Hong Zhang,et al. Hierarchical Krylov and nested Krylov methods for extreme-scale computing , 2014, Parallel Comput..
[70] Zdenek Strakos,et al. Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..
[71] Erin Carson,et al. Communication-Avoiding Krylov Subspace Methods in Theory and Practice , 2015 .
[72] G. Meurant. Computer Solution of Large Linear Systems , 1999 .
[73] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[74] Sandia Report,et al. Toward a New Metric for Ranking High Performance Computing Systems , 2013 .