Fine and Wilf's Theorem for Three Periods and a Generalization of Sturmian Words

We extend the theorem of Fine and Wilf to words having three periods. We then define the set 3-PER of words of maximal length for which such result does not apply. We prove that the set 3-PER and the sequences of complexity 2n + 1, introduced by Arnoux and Rauzy to generalize Sturmian words, have the same set of factors.

[1]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[2]  Filippo Mignosi,et al.  Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..

[3]  Pascal Hubert Complexit?e de suites d?efinies par des billards rationnels , 1995 .

[4]  Filippo Mignosi,et al.  Morphismes sturmiens et règles de Rauzy , 1993 .

[5]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[6]  J. Berstel,et al.  Theory of codes , 1985 .

[7]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[8]  Gordon H. Bradley,et al.  Algorithm and bound for the greatest common divisor of n integers , 1970, CACM.

[9]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[10]  Michael S. Waterman,et al.  Multidimensional greatest common divisor and Lehmer algorithms , 1977 .

[11]  Aldo de Luca,et al.  Sturmian Words, Lyndon Words and Trees , 1997, Theor. Comput. Sci..

[12]  Leonidas J. Guibas,et al.  Periods in Strings , 1981, J. Comb. Theory, Ser. A.

[13]  Aldo de Luca,et al.  Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..

[14]  Pascal Hubert,et al.  Combinatorial properties of sequences defined by the billiard in paved triangles , 1996 .

[15]  Aldo de Luca,et al.  Standard Sturmian Morphisms , 1997, Theor. Comput. Sci..

[16]  Pierre Arnoux,et al.  Complexity of sequences defined by billiard in the cube , 1994 .

[17]  G. Rauzy,et al.  Mots infinis en arithmétique , 1984, Automata on Infinite Words.