Fine and Wilf's Theorem for Three Periods and a Generalization of Sturmian Words
暂无分享,去创建一个
[1] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[2] Filippo Mignosi,et al. Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..
[3] Pascal Hubert. Complexit?e de suites d?efinies par des billards rationnels , 1995 .
[4] Filippo Mignosi,et al. Morphismes sturmiens et règles de Rauzy , 1993 .
[5] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[6] J. Berstel,et al. Theory of codes , 1985 .
[7] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[8] Gordon H. Bradley,et al. Algorithm and bound for the greatest common divisor of n integers , 1970, CACM.
[9] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[10] Michael S. Waterman,et al. Multidimensional greatest common divisor and Lehmer algorithms , 1977 .
[11] Aldo de Luca,et al. Sturmian Words, Lyndon Words and Trees , 1997, Theor. Comput. Sci..
[12] Leonidas J. Guibas,et al. Periods in Strings , 1981, J. Comb. Theory, Ser. A.
[13] Aldo de Luca,et al. Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..
[14] Pascal Hubert,et al. Combinatorial properties of sequences defined by the billiard in paved triangles , 1996 .
[15] Aldo de Luca,et al. Standard Sturmian Morphisms , 1997, Theor. Comput. Sci..
[16] Pierre Arnoux,et al. Complexity of sequences defined by billiard in the cube , 1994 .
[17] G. Rauzy,et al. Mots infinis en arithmétique , 1984, Automata on Infinite Words.