Data-driven identification of the spatio-temporal structure of turbulent flows by streaming Dynamic Mode Decomposition

Streaming Dynamic Mode Decomposition (sDMD) (Hemati et al., Phys. Fluids 26(2014)) is a low-storage version of Dynamic Mode Decomposition (DMD) (Schmid, J. Fluid Mech. 656 (2010)), a data-driven method to extract spatio-temporal flow patterns. Streaming DMD avoids storing the entire data sequence in memory by approximating the dynamic modes through incremental updates with new available data. In this paper, we use sDMD to identify and extract dominant spatio-temporal structures of different turbulent flows, requiring the analysis of large datasets. First, the efficiency and accuracy of sDMD are compared to the classical DMD, using a publicly available test dataset that consists of velocity field snapshots obtained by direct numerical simulation of a wake flow behind a cylinder. Streaming DMD not only reliably reproduces the most important dynamical features of the flow; our calculations also highlight its advantage in terms of the required computational resources. We subsequently use sDMD to analyse three different turbulent flows that all show some degree of large-scale coherence: rapidly rotating Rayleigh--Benard convection, horizontal convection and the asymptotic suction boundary layer. Structures of different frequencies and spatial extent can be clearly separated, and the prominent features of the dynamics are captured with just a few dynamic modes. In summary, we demonstrate that sDMD is a powerful tool for the identification of spatio-temporal structures in a wide range of turbulent flows.

[1]  Jacob Page,et al.  Searching turbulence for periodic orbits with dynamic mode decomposition , 2019, Journal of Fluid Mechanics.

[2]  Mykel J. Kochenderfer,et al.  Deep Dynamical Modeling and Control of Unsteady Fluid Flows , 2018, NeurIPS.

[3]  Richard J. A. M. Stevens,et al.  Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution , 2010, 1109.6870.

[4]  R. Mathis,et al.  Predictive Model for Wall-Bounded Turbulent Flow , 2010, Science.

[5]  David L. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4/sqrt(3) , 2013, 1305.5870.

[6]  Detlef Lohse,et al.  Comparison of computational codes for direct numerical simulations of turbulent Rayleigh–Bénard convection , 2018, 1802.09054.

[7]  Jason Monty,et al.  Large-scale features in turbulent pipe and channel flows , 2007, Journal of Fluid Mechanics.

[8]  A. Hussain,et al.  Coherent structures and turbulence , 1986, Journal of Fluid Mechanics.

[9]  P. Schmid,et al.  Prograde, retrograde, and oscillatory modes in rotating Rayleigh–Bénard convection , 2017, Journal of Fluid Mechanics.

[10]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[11]  J. Hart,et al.  High Rayleigh number β-convection , 1993 .

[12]  Jorge Bailon-Cuba,et al.  Low-dimensional model of turbulent mixed convection in a complex domain , 2012 .

[13]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[14]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[15]  P. Reiter,et al.  Classical and symmetrical horizontal convection: detaching plumes and oscillations , 2020, Journal of Fluid Mechanics.

[16]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[17]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[18]  Carl D. Meinhart,et al.  On the existence of uniform momentum zones in a turbulent boundary layer , 1995 .

[19]  O. Shishkina Tenacious wall states in thermal convection in rapidly rotating containers , 2020, Journal of Fluid Mechanics.

[20]  Bernd R. Noack,et al.  Model reduction using Dynamic Mode Decomposition , 2014 .

[21]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[22]  E. Knobloch,et al.  Robust wall modes in rapidly rotating Rayleigh-B\'enard convection , 2020 .

[23]  E. Spiegel Convection in Stars I. Basic Boussinesq Convection , 1971 .

[24]  Chao Sun,et al.  High-Reynolds number Taylor-Couette turbulence. , 2016, 1904.00183.

[25]  John L. Lumley,et al.  A low-dimensional approach for the minimal flow unit of a turbulent channel flow , 1996 .

[26]  Alexander Smits,et al.  High–Reynolds Number Wall Turbulence , 2011 .

[27]  K. Mahesh,et al.  A parallel Dynamic Mode Decomposition algorithm using modified Full Orthogonalization Arnoldi for large sequential snapshots , 2018 .

[28]  D. Lohse,et al.  Heat and momentum transport scalings in horizontal convection , 2016 .

[29]  Clarence W. Rowley,et al.  Online dynamic mode decomposition for time-varying systems , 2017, SIAM J. Appl. Dyn. Syst..

[30]  G. Ahlers,et al.  Boundary Zonal Flow in Rotating Turbulent Rayleigh-Bénard Convection. , 2019, Physical review letters.

[31]  R. Murray,et al.  Model reduction for compressible flows using POD and Galerkin projection , 2004 .

[32]  A. Jirásek,et al.  Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics , 2014 .

[33]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[34]  E. Ching,et al.  Thermal boundary layer equation for turbulent Rayleigh-Bénard convection. , 2014, Physical review letters.

[35]  Detlef Lohse,et al.  Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection , 2008, 0811.0471.

[36]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[37]  Ivan Marusic,et al.  Evidence of very long meandering features in the logarithmic region of turbulent boundary layers , 2007, Journal of Fluid Mechanics.

[38]  D. Lohse,et al.  Small-Scale Properties of Turbulent Rayleigh-Bénard Convection , 2010 .

[39]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[40]  G. Katul The anatomy of large-scale motion in atmospheric boundary layers , 2018, Journal of Fluid Mechanics.

[41]  Scott T. M. Dawson,et al.  Model Reduction for Flow Analysis and Control , 2017 .

[42]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[43]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[44]  J. Marotzke,et al.  Geothermal heating and its influence on the meridional overturning circulation , 2001 .

[45]  J. Jimenez,et al.  TWO-DIMENSIONAL BOUNDARY-LAYERS , 1998 .

[46]  Igor Mezic,et al.  Spectrum of the Koopman Operator, Spectral Expansions in Functional Spaces, and State-Space Geometry , 2017, Journal of Nonlinear Science.

[47]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[48]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[49]  Clarence W. Rowley,et al.  Dynamic mode decomposition for large and streaming datasets , 2014, 1406.7187.

[50]  Weiwei Zhang,et al.  An improved criterion to select dominant modes from dynamic mode decomposition , 2017 .

[51]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.